
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Virtual Memory 1

P & H Chapter 5.4 (up to TLBs)

2

Processor & Memory

CPU address/data bus...

… routed through caches

… to main memory

• Simple, fast, but…

Q: What happens for LW/SW
to an invalid location?

• 0x000000000 (NULL)

• uninitialized pointer

CPU

Text

Data

Stack

Heap

Memory

3

Multiple Processes

Running multiple processes…

Time-multiplex a single CPU core (multi-tasking)

• Web browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
or many processors (multi-processor)

• Multiple programs run simultaneously

4

Multiple Processors

Q: What happens when another program is
executed concurrently on another processor?

• Take turns using memory?
CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

5

Solution? Multiple processes/processors

Can we relocate second program?

• What if they don’t fit?

• What if not contiguous?

• Need to recompile/relink?

• …

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

6

All problems in computer science can be solved by
another level of indirection.

– David Wheeler

– or, Butler Lampson

– or, Leslie Lamport

– or, Steve Bellovin

7

Virtual Memory

Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access

• all access is indirect through a virtual address

• translate fake virtual address to a real physical address

• redirect load/store to the physical address

8

Address Spaces

wikipedia

9

Address Space

Programs load/store to virtual addresses

Actual memory uses physical addresses

Memory Management Unit (MMU)

• Responsible for translating on the fly

• Essentially, just a big array of integers:
paddr = PageTable[vaddr];

CPU

MMU

A
B
C

X

Y

Z

X
Y
Z

C
B

A

CPU

MMU

10

Virtual Memory Advantages

Advantages

Easy relocation

• Loader puts code anywhere in physical memory

• Creates virtual mappings to give illusion of correct layout

Higher memory utilization

• Provide illusion of contiguous memory

• Use all physical memory, even physical address 0x0

Easy sharing

• Different mappings for different programs / cores

And more to come…

11

Address Translation

Pages, Page Tables, and

the Memory Management Unit (MMU)

12

Address Translation

Attempt #1: How does MMU translate addresses?

paddr = PageTable[vaddr];

Granularity?

• Per word…

• Per block…

• Variable…

Typical:

• 4KB – 16KB pages

• 4MB – 256MB jumbo pages

13

Address Translation

Attempt #1: For any access to virtual address:

• Calculate virtual page number and page offset

• Lookup physical page number at PageTable[vpn]

• Calculate physical address as ppn:offset

vaddrPage OffsetVirtual page number

Page offsetPhysical page number

Lookup in PageTable

paddr

14

Simple PageTable

Q: Where to store page tables?

A: In memory, of course…
Special page table base register
(CR3:PTBR on x86)
(Cop0:ContextRegister on MIPS)

CPU MMUData

Read Mem[0x00201538]

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

* lies to children

15

Summary

vpn pgoff

Physical Page
Number
0x10045

0xC20A3
0x4123B
0x00000
0x20340

vaddr

* lies to children

PTBR

16

Page Size Example

Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

• total memory: 232 bytes = 4GB

• page size: 212 bytes = 4KB

• entries in PageTable?

• size of PageTable?

Physical address space:

• total memory: 229 bytes = 512MB

• overhead for 10 processes?

* lies to children

17

Invalid Pages

Cool Trick #1: Don’t map all pages

Need valid bit for each
page table entry

Q: Why?

V
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

18

Beyond Flat Page Tables

Assume most of PageTable is empty

How to translate addresses?

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this

19

Page Permissions

Cool Trick #2: Page permissions!

Keep R, W, X permission bits for
each page table entry

Q: Why?

V R W X
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

20

Aliasing

Cool Trick #3: Aliasing

Map the same physical page
at several virtual addresses

Q: Why?

V R W X
Physical Page

Number
0
1 0xC20A3
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

21

Paging

22

Paging

Can we run process larger than physical memory?

• The “virtual” in “virtual memory”

View memory as a “cache” for secondary storage

• Swap memory pages out to disk when not in use

• Page them back in when needed

Assumes Temporal/Spatial Locality

• Pages used recently most likely to be used again soon

23

Paging

Cool Trick #4: Paging/Swapping

Need more bits:

Dirty, RecentlyUsed, …

V R W X D
Physical Page

Number
0 invalid
1 0 0x10045
0 invalid
0 invalid
0 0 disk sector 200
0 0 disk sector 25
1 1 0x00000
0 invalid

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25

200

24

Role of the Operating System

Context switches, working set,

shared memory

25

sbrk

Suppose Firefox needs a new page of memory

(1) Invoke the Operating System

void *sbrk(int nbytes);

(2) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable

26

Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System

int sleep(int nseconds);

(2) OS saves Firefox’s registers, load skype’s

• (more on this later)

(3) OS changes the CPU’s Page Table Base Register

• Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype

27

Shared Memory

Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable

• add a new entry to Skype’s PageTable

– can be same or different vaddr

– can be same or different page permissions

28

Multiplexing

Suppose Skype needs a new page of memory, but Firefox is
hogging it all

(1) Invoke the Operating System

void *sbrk(int nbytes);

(2) OS can’t find a free page of physical memory

• Pick a page from Firefox instead (or other process)

(3) If page table entry has dirty bit set…

• Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”

• Firefox will fault if it tries to access the page

(5) Give the newly freed physical page to Skype

• clear the page (fill with zeros)

• add a new entry to Skyps’s PageTable

29

Paging Assumption 1

OS multiplexes physical memory among processes

• assumption # 1:
processes use only a few pages at a time

• working set = set of process’s recently actively pages

re

ce
n

t
ac

ce
ss

es

0x00000000 0x90000000

30

Reasons for Thrashing

Q: What if working set is too large?

Case 1: Single process using too many pages

Case 2: Too many processes

working set

mem disk

swappedP1

working set

mem disk

swapped

ws

mem disk

ws ws ws ws ws

31

Thrashing

Thrashing b/c working set of process (or processes)
greater than physical memory available

– Firefox steals page from Skype

– Skype steals page from Firefox

• I/O (disk activity) at 100% utilization

– But no useful work is getting done

Ideal: Size of disk, speed of memory (or cache)

Non-ideal: Speed of disk

32

Paging Assumption 2

OS multiplexes physical memory among processes

• assumption # 2:
recent accesses predict future accesses

• working set usually changes slowly over time

w
o

rk
in

g
se

t

time

33

More Thrashing

Q: What if working set changes rapidly or
unpredictably?

A: Thrashing b/c recent accesses don’t predict
future accesses

w
o

rk
in

g
se

t

time

34

Preventing Thrashing

How to prevent thrashing?

• User: Don’t run too many apps

• Process: efficient and predictable mem usage

• OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

