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P & H Chapter 5.4 (up to TLBs)
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Processor & Memory

CPU address/data bus...

… routed through caches

… to main memory

• Simple, fast, but…

Q: What happens for LW/SW 
to an invalid location?

• 0x000000000 (NULL)

• uninitialized pointer
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Multiple Processes

Running multiple processes…

Time-multiplex a single CPU core (multi-tasking)

• Web browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
or many processors (multi-processor)

• Multiple programs run simultaneously



4

Multiple Processors 

Q: What happens when another program is 
executed concurrently on another processor?

• Take turns using memory?
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Solution? Multiple processes/processors

Can we relocate second program?

• What if they don’t fit?

• What if not contiguous?

• Need to recompile/relink?

• …
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All problems in computer science can be solved by 
another level of indirection.

– David Wheeler

– or, Butler Lampson

– or, Leslie Lamport

– or, Steve Bellovin
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Virtual Memory

Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access

• all access is indirect through a virtual address

• translate fake virtual address to a real physical address

• redirect load/store to the physical address
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Address Spaces

wikipedia
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Address Space

Programs load/store to virtual addresses

Actual memory uses physical addresses

Memory Management Unit (MMU)

• Responsible for translating on the fly

• Essentially, just a big array of integers:
paddr = PageTable[vaddr];
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Virtual Memory Advantages

Advantages

Easy relocation

• Loader puts code anywhere in physical memory

• Creates virtual mappings to give illusion of correct layout

Higher memory utilization

• Provide illusion of contiguous memory

• Use all physical memory, even physical address 0x0

Easy sharing

• Different mappings for different programs / cores

And more to come…
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Address Translation

Pages, Page Tables, and 

the Memory Management Unit (MMU)
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Address Translation

Attempt #1: How does MMU translate addresses? 

paddr = PageTable[vaddr];

Granularity?

• Per word…

• Per block…

• Variable…

Typical:

• 4KB – 16KB pages

• 4MB – 256MB jumbo pages
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Address Translation

Attempt #1: For any access to virtual address:

• Calculate virtual page number and page offset

• Lookup physical page number at PageTable[vpn]

• Calculate physical address as ppn:offset

vaddrPage OffsetVirtual page number

Page offsetPhysical page number

Lookup in PageTable

paddr
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Simple PageTable

Q: Where to store page tables?

A: In memory, of course…
Special page table base register
(CR3:PTBR on x86)
(Cop0:ContextRegister on MIPS)

CPU MMUData

Read Mem[0x00201538]

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

* lies to children
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Summary

vpn pgoff

Physical Page 
Number
0x10045

0xC20A3
0x4123B
0x00000
0x20340

vaddr

* lies to children

PTBR
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Page Size Example

Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

• total memory: 232 bytes = 4GB

• page size: 212 bytes = 4KB

• entries in PageTable?

• size of PageTable?

Physical address space:

• total memory: 229 bytes = 512MB

• overhead for 10 processes?

* lies to children
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Invalid Pages

Cool Trick #1: Don’t map all pages 

Need valid bit for each 
page table entry

Q: Why?

V
Physical Page 

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000
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Beyond Flat Page Tables

Assume most of PageTable is empty

How to translate addresses? 

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this
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Page Permissions

Cool Trick #2: Page permissions!

Keep R, W, X permission bits for 
each page table entry

Q: Why?

V R W X
Physical Page 

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000
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Aliasing

Cool Trick #3: Aliasing

Map the same physical page
at several virtual addresses

Q: Why?

V R W X
Physical Page 

Number
0
1 0xC20A3
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000
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Paging
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Paging

Can we run process larger than physical memory?

• The “virtual” in “virtual memory”

View memory as a “cache” for secondary storage

• Swap memory pages out to disk when not in use

• Page them back in when needed

Assumes Temporal/Spatial Locality

• Pages used recently most likely to be used again soon
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Paging

Cool Trick #4: Paging/Swapping

Need more bits:

Dirty, RecentlyUsed, …

V R W X D
Physical Page 

Number
0 invalid
1 0 0x10045
0 invalid
0 invalid
0 0 disk sector 200
0 0 disk sector 25
1 1 0x00000
0 invalid

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25

200
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Role of the Operating System

Context switches, working set, 

shared memory
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sbrk

Suppose Firefox needs a new page of memory

(1) Invoke the Operating System

void *sbrk(int nbytes);

(2) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable
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Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System

int sleep(int nseconds);

(2) OS saves Firefox’s registers, load skype’s

• (more on this later)

(3) OS changes the CPU’s Page Table Base Register

• Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype
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Shared Memory

Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable

• add a new entry to Skype’s PageTable

– can be same or different vaddr

– can be same or different page permissions
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Multiplexing

Suppose Skype needs a new page of memory, but Firefox is 
hogging it all

(1) Invoke the Operating System

void *sbrk(int nbytes);

(2) OS can’t find a free page of physical memory

• Pick a page from Firefox instead (or other process)

(3) If page table entry has dirty bit set…

• Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”

• Firefox will fault if it tries to access the page

(5)  Give the newly freed physical page to Skype

• clear the page (fill with zeros)

• add a new entry to Skyps’s PageTable
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Paging Assumption 1

OS multiplexes physical memory among processes

• assumption # 1: 
processes use only a few pages at a time

• working set = set of process’s recently actively pages
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Reasons for Thrashing

Q: What if working set is too large?

Case 1: Single process using too many pages

Case 2: Too many processes

working set

mem disk

swappedP1

working set

mem disk

swapped

ws

mem disk

ws ws ws ws ws



31

Thrashing

Thrashing b/c working set of process (or processes) 
greater than physical memory available

– Firefox steals page from Skype

– Skype steals page from Firefox

• I/O (disk activity) at 100% utilization

– But no useful work is getting done

Ideal: Size of disk, speed of memory (or cache)

Non-ideal: Speed of disk
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Paging Assumption 2

OS multiplexes physical memory among processes

• assumption # 2: 
recent accesses predict future accesses

• working set usually changes slowly over time
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More Thrashing

Q: What if working set changes rapidly or 
unpredictably?

A: Thrashing b/c recent accesses don’t predict 
future accesses
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Preventing Thrashing

How to prevent thrashing?

• User: Don’t run too many apps

• Process: efficient and predictable mem usage

• OS: Don’t over-commit memory, memory-aware 
scheduling policies, etc.


