
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Caches 2

P & H Chapter 5.2 (writes), 5.3, 5.5

2

Cache Tradeoffs

Direct Mapped

+ Smaller

+ Less

+ Less

+ Faster

+ Less

+ Very

– Lots

– Low

– Common

Fully Associative

Larger –

More –

More –

Slower –

More –

Not Very –

Zero +

High +

?

Tag Size

SRAM Overhead

Controller Logic

Speed

Price

Scalability

of conflict misses

Hit rate

Pathological Cases?

3

Set Associative Caches

4

Compromise

Set Associative Cache

• Each block number
mapped to a single
cache line set index

• Within the set, block
can go in any line

set 0
line 0
line 1
line 2

set 1
line 3
line 4
line 5

0x000000

0x000004

0x000008

0x00000c

0x000010

0x000014

0x000018

0x00001c

0x000020

0x000024

0x00002c

0x000030

0x000034

0x000038

0x00003c

0x000040

0x000044

0x000048

0x00004c

5

2-Way Set Associative Cache

Set Associative Cache

Like direct mapped cache

• Only need to check a few lines for each access…
so: fast, scalable, low overhead

Like a fully associative cache

• Several places each block can go…
so: fewer conflict misses, higher hit rate

6

3-Way Set Associative Cache (Reading)

word select

hit? data

line select

= = =

32bits

64bytes

Tag Index Offset

7

Memory2-Way Set Associative
Cache

Processor

A Simple 2-Way Set Associative Cache

lb $1 M[1]
lb $2 M[13]
lb $3 M[0]
lb $3 M[6]
lb $2 M[5]
lb $2 M[6]
lb $2 M[10]
lb $2 M[12]

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

A =

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

8

Memory

Fully Associative

Processor

Comparing Caches

lb $1 M[1]
lb $2 M[8]
lb $3 M[1]
lb $3 M[8]
lb $2 M[1]
lb $2 M[16]
lb $2 M[1]
lb $2 M[8]

$1
$2
$3
$4

A Pathological Case

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Direct Mapped

2-Way Set Associative

9

Remaining Issues

To Do:

• Evicting cache lines

• Picking cache parameters

• Writing using the cache

10

Eviction

Q: Which line should we evict to make room?

For direct-mapped?

A: no choice, must evict the indexed line

For associative caches?

FIFO: oldest line (timestamp per line)

LRU: least recently used (ts per line)

LFU: (need a counter per line)

MRU: most recently used (?!) (ts per line)

RR: round-robin (need a finger per set)

RAND: random (free!)

Belady’s: optimal (need time travel)

11

Cache Parameters

12

Performance Comparison

cache size →

m
is

s
ra

te
 →

direct mapped, 2-way, 8-way, fully associativedirect mapped

13

Cache Design

Need to determine parameters:

• Cache size

• Block size (aka line size)

• Number of ways of set-associativity (1, N, )

• Eviction policy

• Number of levels of caching, parameters for each

• Separate I-cache from D-cache, or Unified cache

• Prefetching policies / instructions

• Write policy

14

A Real Example> dmidecode -t cache
Cache Information

Configuration: Enabled, Not Socketed, Level 1
Operational Mode: Write Back
Installed Size: 128 KB
Error Correction Type: None

Cache Information
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Varies With Memory Address
Installed Size: 6144 KB
Error Correction Type: Single-bit ECC

> cd /sys/devices/system/cpu/cpu0; grep cache/*/*
cache/index0/level:1
cache/index0/type:Data
cache/index0/ways_of_associativity:8
cache/index0/number_of_sets:64
cache/index0/coherency_line_size:64
cache/index0/size:32K
cache/index1/level:1
cache/index1/type:Instruction
cache/index1/ways_of_associativity:8
cache/index1/number_of_sets:64
cache/index1/coherency_line_size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number_of_sets:4096
cache/index2/coherency_line_size:64
cache/index2/size:6144K

Dual-core 3.16GHz Intel
(purchased in 2009)

15

A Real Example

Dual 32K L1 Instruction caches
• 8-way set associative

• 64 sets

• 64 byte line size

Dual 32K L1 Data caches
• Same as above

Single 6M L2 Unified cache
• 24-way set associative (!!!)

• 4096 sets

• 64 byte line size

4GB Main memory

1TB Disk

Dual-core 3.16GHz Intel
(purchased in 2009)

16

Basic Cache Organization

Q: How to decide block size?

A: Try it and see

But: depends on cache size, workload,
associativity, …

Experimental approach!

17

Experimental Results

18

Tradeoffs

For a given total cache size,

larger block sizes mean….

• fewer lines

• so fewer tags (and smaller tags for associative caches)

• so less overhead

• and fewer cold misses (within-block “prefetching”)

But also…

• fewer blocks available (for scattered accesses!)

• so more conflicts

• and larger miss penalty (time to fetch block)

19

Writing with Caches

20

Cached Write Policies

Q: How to write data?

CPU
Cache

SRAM

Memory

DRAM

addr

data

If data is already in the cache…

No-Write
• writes invalidate the cache and go directly to memory

Write-Through
• writes go to main memory and cache

Write-Back
• CPU writes only to cache

• cache writes to main memory later (when block is evicted)

21

Write Allocation Policies

Q: How to write data?

CPU
Cache

SRAM

Memory

DRAM

addr

data

If data is not in the cache…

Write-Allocate
• allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
• ignore cache, just go to main memory

22

MemoryDirect Mapped Cache
+ Write-through
+ Write-allocate

Processor

A Simple 2-Way Set Associative Cache

lb $1 M[1]
lb $2 M[7]
sb $2 M[0]
sb $1 M[5]
lb $2 M[9]
sb $1 M[5]
sb $1 M[0]

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

23

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem

• 5 misses  10 mem reads

Each store writes an item to mem

• 4 mem writes

Evictions don’t need to write to mem

• no need for dirty bit

24

MemoryDirect Mapped Cache
+ Write-back

+ Write-allocate

Processor

A Simple 2-Way Set Associative Cache

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

D

lb $1 M[1]
lb $2 M[7]
sb $2 M[0]
sb $1 M[5]
lb $2 M[9]
sb $1 M[5]
sb $1 M[0]

25

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem

• 5 misses  10 mem reads

Some evictions write a block to mem

• 1 dirty eviction  2 mem writes

• (+ 2 dirty evictions later  +4 mem writes)

• need a dirty bit

26

Write-Back Meta-Data

V = 1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:

• Set V = 1, D = 0, fill in Tag and Data

When writing line:

• Set D = 1

When evicting line:

• If D = 0: just set V = 0

• If D = 1: write-back Data, then set D = 0, V = 0

V D Tag Byte 1 Byte 2 … Byte N

27

Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

A[0] += A[i];

for (i=0; i<n; i++)

B[i] = A[i]

28

Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

A[0] += A[i];

for (i=0; i<n; i++)

B[i] = A[i]

29

Performance Tradeoffs

Q: Hit time: write-through vs. write-back?

A: Write-through slower on writes.

Q: Miss penalty: write-through vs. write-back?

A: Write-back slower on evictions.

30

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer

• A small queue holding dirty lines

• Add to end upon eviction

• Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

31

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer

• A small queue holding dirty lines

• Add to end upon eviction

• Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

32

Write-through vs. Write-back

Write-through is slower

• But simpler (memory always consistent)

Write-back is almost always faster

• write-back buffer hides large eviction cost

• But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol

• Inconsistent views of memory

• Need to “snoop” in each other’s caches

• Extremely complex protocols, very hard to get right

33

Cache-coherency

Q: Multiple readers and writers?

A: Potentially inconsistent views of memory

Mem

L2

L1 L1

Cache coherency protocol
• May need to snoop on other CPU’s cache activity
• Invalidate cache line when other CPU writes
• Flush write-back caches before other CPU reads
• Or the reverse: Before writing/reading…
• Extremely complex protocols, very hard to get right

CPU

L1 L1

CPU

L2

L1 L1

CPU

L1 L1

CPU

disknet

34

Cache Conscious Programming

35

Cache Conscious Programming

Every access is a cache miss!

(unless entire matrix can fit in cache)

// H = 12, W = 10

int A[H][W];

for(x=0; x < W; x++)

for(y=0; y < H; y++)

sum += A[y][x];

1 11 21

2 12 22

3 13 23

4 14 24

5 15

25

6 16 26

7 17 …

8 18

9 19

10 20

36

Cache Conscious Programming

Block size = 4  75% hit rate

Block size = 8  87.5% hit rate

Block size = 16  93.75% hit rate

And you can easily prefetch to warm the cache.

// H = 12, W = 10

int A[H][W];

for(y=0; y < H; y++)

for(x=0; x < W; x++)

sum += A[y][x];

1 2 3 4 5 6 7 8 9 10

11 12 13 …

37

Summary

Caching assumptions

• small working set: 90/10 rule

• can predict future: spatial & temporal locality

Benefits

• (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

38

Summary

Memory performance matters!

• often more than CPU performance

• … because it is the bottleneck, and not improving much

• … because most programs move a LOT of data

Design space is huge

• Gambling against program behavior

• Cuts across all layers:
users  programs  os hardware

Multi-core / Multi-Processor is complicated

• Inconsistent views of memory

• Extremely complex protocols, very hard to get right

