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Cache Tradeoffs

Direct Mapped
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Set Associative Caches
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Compromise

Set Associative Cache

• Each block number 
mapped to a single
cache line set index

• Within the set, block
can go in any line

set 0
line 0
line 1
line 2

set 1
line 3
line 4
line 5

0x000000

0x000004

0x000008

0x00000c

0x000010

0x000014

0x000018

0x00001c

0x000020

0x000024

0x00002c

0x000030

0x000034

0x000038

0x00003c

0x000040

0x000044

0x000048

0x00004c
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2-Way Set Associative Cache

Set Associative Cache

Like direct mapped cache

• Only need to check a few lines for each access…
so: fast, scalable, low overhead

Like a fully associative cache

• Several places each block can go…
so: fewer conflict misses, higher hit rate
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3-Way Set Associative Cache (Reading)

word select

hit? data

line select

= = =

32bits

64bytes

Tag Index Offset
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Memory2-Way Set Associative
Cache

Processor

A Simple 2-Way Set Associative Cache

lb  $1 M[ 1 ]
lb  $2 M[ 13 ]
lb  $3 M[ 0 ]
lb  $3 M[ 6 ]
lb  $2 M[ 5 ]
lb  $2 M[ 6 ]
lb  $2 M[ 10 ]
lb  $2 M[ 12 ]

V tag    data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits:             Misses:

A =

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181
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Memory

Fully Associative

Processor

Comparing Caches

lb  $1 M[ 1 ]
lb  $2 M[ 8 ]
lb  $3 M[ 1 ]
lb  $3 M[ 8 ]
lb  $2 M[ 1 ]
lb  $2 M[ 16 ]
lb  $2 M[ 1 ]
lb  $2 M[ 8 ]

$1
$2
$3
$4

A Pathological Case

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Direct Mapped

2-Way Set Associative
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Remaining Issues

To Do:

• Evicting cache lines

• Picking cache parameters

• Writing using the cache
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Eviction

Q: Which line should we evict to make room?

For direct-mapped?

A: no choice, must evict the indexed line

For associative caches?

FIFO: oldest line (timestamp per line)

LRU: least recently used (ts per line)

LFU: (need a counter per line)

MRU: most recently used (?!) (ts per line)

RR: round-robin (need a finger per set)

RAND: random (free!)

Belady’s: optimal (need time travel)
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Cache Parameters
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Performance Comparison

cache size →

m
is

s 
ra

te
 →

direct mapped, 2-way, 8-way, fully associativedirect mapped
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Cache Design

Need to determine parameters:

• Cache size

• Block size (aka line size)

• Number of ways of set-associativity (1, N, )

• Eviction policy

• Number of levels of caching, parameters for each

• Separate I-cache from D-cache, or Unified cache

• Prefetching policies / instructions

• Write policy
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A Real Example> dmidecode -t cache
Cache Information

Configuration: Enabled, Not Socketed, Level 1
Operational Mode: Write Back
Installed Size: 128 KB
Error Correction Type: None

Cache Information
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Varies With Memory Address
Installed Size: 6144 KB
Error Correction Type: Single-bit ECC

> cd /sys/devices/system/cpu/cpu0; grep cache/*/*
cache/index0/level:1
cache/index0/type:Data
cache/index0/ways_of_associativity:8
cache/index0/number_of_sets:64
cache/index0/coherency_line_size:64
cache/index0/size:32K
cache/index1/level:1
cache/index1/type:Instruction
cache/index1/ways_of_associativity:8
cache/index1/number_of_sets:64
cache/index1/coherency_line_size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number_of_sets:4096
cache/index2/coherency_line_size:64
cache/index2/size:6144K

Dual-core 3.16GHz Intel 
(purchased in 2009)



15

A Real Example

Dual 32K L1 Instruction caches
• 8-way set associative

• 64 sets

• 64 byte line size

Dual 32K L1 Data caches
• Same as above

Single 6M L2 Unified cache
• 24-way set associative (!!!)

• 4096 sets

• 64 byte line size

4GB Main memory

1TB Disk

Dual-core 3.16GHz Intel 
(purchased in 2009)
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Basic Cache Organization

Q: How to decide block size?

A: Try it and see

But: depends on cache size, workload, 
associativity, …

Experimental approach!
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Experimental Results
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Tradeoffs

For a given total cache size,

larger block sizes mean…. 

• fewer lines

• so fewer tags (and smaller tags for associative caches)

• so less overhead

• and fewer cold misses (within-block “prefetching”)

But also…

• fewer blocks available (for scattered accesses!)

• so more conflicts

• and larger miss penalty (time to fetch block)
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Writing with Caches
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Cached Write Policies

Q: How to write data?

CPU
Cache

SRAM

Memory

DRAM

addr

data

If data is already in the cache…

No-Write
• writes invalidate the cache and go directly to memory

Write-Through
• writes go to main memory and cache

Write-Back
• CPU writes only to cache

• cache writes to main memory later (when block is evicted)
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Write Allocation Policies

Q: How to write data?

CPU
Cache

SRAM

Memory

DRAM

addr

data

If data is not in the cache…

Write-Allocate
• allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
• ignore cache, just go to main memory
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MemoryDirect Mapped Cache
+ Write-through
+ Write-allocate

Processor

A Simple 2-Way Set Associative Cache

lb  $1 M[ 1 ]
lb  $2 M[ 7 ]
sb $2 M[ 0 ]
sb $1 M[ 5 ]
lb  $2 M[ 9 ]
sb $1 M[ 5 ]
sb $1 M[ 0 ]

V tag    data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits:             Misses:

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181
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How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem

• 5 misses  10 mem reads

Each store writes an item to mem

• 4 mem writes

Evictions don’t need to write to mem

• no need for dirty bit
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MemoryDirect Mapped Cache
+ Write-back

+ Write-allocate

Processor

A Simple 2-Way Set Associative Cache

V tag    data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits:             Misses:

D

lb  $1 M[ 1 ]
lb  $2 M[ 7 ]
sb $2 M[ 0 ]
sb $1 M[ 5 ]
lb  $2 M[ 9 ]
sb $1 M[ 5 ]
sb $1 M[ 0 ]
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How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem

• 5 misses  10 mem reads

Some evictions write a block to mem

• 1 dirty eviction  2 mem writes

• (+ 2 dirty evictions later  +4 mem writes)

• need a dirty bit
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Write-Back Meta-Data

V = 1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:

• Set V = 1, D = 0, fill in Tag and Data

When writing line:

• Set D = 1

When evicting line:

• If D = 0: just set V = 0

• If D = 1: write-back Data, then set D = 0, V = 0

V D Tag Byte 1 Byte 2 … Byte N
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Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

A[0] += A[i];

for (i=0; i<n; i++)

B[i] = A[i]
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Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

A[0] += A[i];

for (i=0; i<n; i++)

B[i] = A[i]
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Performance Tradeoffs

Q: Hit time: write-through vs. write-back?

A: Write-through slower on writes.

Q: Miss penalty: write-through vs. write-back?

A: Write-back slower on evictions.
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Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer

• A small queue holding dirty lines

• Add to end upon eviction

• Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty
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Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer

• A small queue holding dirty lines

• Add to end upon eviction

• Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty
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Write-through vs. Write-back

Write-through is slower

• But simpler (memory always consistent)

Write-back is almost always faster

• write-back buffer hides large eviction cost

• But what about multiple cores with separate caches 
but sharing memory?

Write-back requires a cache coherency protocol

• Inconsistent views of memory

• Need to “snoop” in each other’s caches

• Extremely complex protocols, very hard to get right
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Cache-coherency

Q: Multiple readers and writers?

A: Potentially inconsistent views of memory

Mem

L2

L1 L1

Cache coherency protocol
• May need to snoop on other CPU’s cache activity
• Invalidate cache line when other CPU writes
• Flush write-back caches before other CPU reads
• Or the reverse: Before writing/reading…
• Extremely complex protocols, very hard to get right

CPU

L1 L1

CPU

L2

L1 L1

CPU

L1 L1

CPU

disknet
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Cache Conscious Programming
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Cache Conscious Programming

Every access is a cache miss!

(unless entire matrix can fit in cache)

// H = 12, W = 10

int A[H][W];

for(x=0; x < W; x++) 

for(y=0; y < H; y++)

sum += A[y][x];

1 11 21

2 12 22

3 13 23

4 14 24

5 15

25

6 16 26

7 17 …

8 18

9 19

10 20
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Cache Conscious Programming

Block size = 4  75% hit rate

Block size = 8  87.5% hit rate

Block size = 16  93.75%  hit rate

And you can easily prefetch to warm the cache.

// H = 12, W = 10

int A[H][W];

for(y=0; y < H; y++)

for(x=0; x < W; x++) 

sum += A[y][x];

1 2 3 4 5 6 7 8 9 10

11 12 13 …
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Summary

Caching assumptions

• small working set: 90/10 rule

• can predict future: spatial & temporal locality

Benefits

• (big & fast) built from (big & slow) + (small & fast)

Tradeoffs: 
associativity, line size, hit cost, miss penalty, hit rate
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Summary

Memory performance matters!

• often more than CPU performance

• … because it is the bottleneck, and not improving much

• … because most programs move a LOT of data

Design space is huge

• Gambling against program behavior

• Cuts across all layers: 
users  programs  os hardware

Multi-core / Multi-Processor is complicated

• Inconsistent views of memory

• Extremely complex protocols, very hard to get right


