Caches 2

Kevin Walsh CS 3410, Spring 2010

Computer Science Cornell University

Direct	Map	ped
--------	-----	-----

- + Smaller
- + Less
- + Less
- + Faster
- + Less
- + Very
- Lots
- Low
- Common

Fully Associative

- Tag Size
- **SRAM Overhead**
- Controller Logic
 - Speed
 - Price
 - Scalability
- # of conflict misses
 - Hit rate
- Pathological Cases?

- Larger
 - More -
 - More -
- Slower -
 - More –
- Not Very -
- (ア) Zero +
 - High +
 - .

Set Associative Caches

Set Associative Cache

- Each block number mapped to a single cache line set index
- Within the set, block can go in any line

ceto	/ 0x000000		
y c , c	0x000004		
1	0x000008		
Set 1	0x00000c		
	/ 0x000010		
50+0	0x000014		
	/ 0x000018		
set	0x0 <u>0001c</u>		L
	0x000020		1
set 9	0x000024		
	/0x00002c		
٠	(0x000030		
	/ 0x000034		
- 1	(0x000038		
- (/ 0x00003c		
,	0x000040		
	(0x000044		
	0x000048		
	0x00004c	4	

Set Associative Cache

Like direct mapped cache

Only need to check a few lines for each access...
 so: fast, scalable, low overhead

Like a fully associative cache

Several places each block can go...
 so: fewer conflict misses, higher hit rate

Using byte addresses in this example! Addr Bus = 5 bits

A Pathological Case

Processor	Direct Mapped	Memory		
 lb \$1 ← M[1]		0 101		
·		1 103		
$lb $2 \leftarrow M[8]$		2 107		
Ib $$3 \leftarrow M[1]$		3 109		
lb \$3 ← M[8]	2-Way Set Associative	4 113		
lb \$2 ← M[1]	Z-vvay Set Associative	5 127		
		6 131		
lb \$2 ← M[16]		7 137		
$ b $2 \leftarrow M[1]$		8 139		
lb \$2 ← M[8]		9 149		
64		10 151		
\$1	Fully Associative	11 157		
\$2		12 163		
		13 167		
\$3		14 173		
\$4		15 179		
		16 181		

To Do:

- Evicting cache lines
- Picking cache parameters
- Writing using the cache

Cache Parameters

direct mapped, 2-way, 8-way, fully associative

Q: Which line should we evict to make room?

For direct-mapped?

A: no choice, must evict the indexed line

For associative caches?

A: FIFO: oldest line (timestamp per line)

A: LRU: least recently used (ts per line)

A: LFU: (need a counter per line)

A: MRU: most recently used (?!) (ts per line)

A: round-robin (need a finger per set)

A: random (free!)

A: Belady's: optimal (need time travel)

Need to determine parameters:

- Block size (aka line size)
- Number of ways of set-associativity (1, N, ∞)
- Eviction policy
- Number of levels of caching, parameters for each
- Separate I-cache from D-cache, or Unified cache
- Prefetching policies
- Write policy

> dmidecode -t cache Cache Information Configuration: Enabled, Not Socketed, Level 1 Operational Mode: Write Back Installed Size: 128 KB Error Correction Type: None Cache Information Configuration: Enabled, Not Socketed, Level 2 Operational Mode: Varies With Memory Address Installed Size: 6144 KB Error Correction Type: Single-bit ECC > cd /sys/devices/system/cpu/cpu0; grep cache/*/* cache/index0/level:1 cache/index0/type:Data cache/index0/ways of associativity:8 cache/index0/number of sets:64 cache/index0/coherency line size:64 cache/index0/size:32K cache/index1/level:1 cache/index1/type:Instruction cache/index1/ways of associativity:8 cache/index1/number of sets:64 cache/index1/coherency line size:64 cache/index1/size:32K cache/index2/level:2 cache/index2/type:Unified cache/index2/shared cpu list:0-1 cache/index2/ways of associativity:24 cache/index2/number of sets:4096 cache/index2/coherency line size:64 cache/index2/size:6144K

Dual-core 3.16GHz Intel (purchased in 2009)

Dual 32K L1 Instruction caches

- 8-way set associative
- 64 sets
- 64 byte line size

Dual 32K L1 Data caches

Same as above

Single 6M L2 Unified cache

- 24-way set associative (!!!)
- 4096 sets
- 64 byte line size

4GB Main memory

1TB Disk

Dual-core 3.16GHz Intel (purchased in 2009)

Q: How to decide block size?

A: Try it and see

But: depends on cache size, workload, associativity, ...

For a given total cache size, larger block sizes mean....

- fewer lines
- so fewer tags (and smaller tags for associative caches)
- so less overhead
- and fewer cold misses (within-block "prefetching")

But

- fewer blocks available (for scattered accesses!)
- so more conflicts
- and miss penalty (time to fetch block) is larger

Writing with Caches

Q: How to write data?

If data is already in the cache...

No-Write

writes invalidate the cache and go directly to memory

Write-Through

writes go to main memory and cache

Write-Back

- CPU writes only to cache
- cache writes to main memory later (when block is evicted)

Q: How to write data?

If data is not in the cache...

Write-Allocate

allocate a cache line for new data (and maybe write-through)

No-Write-Allocate

ignore cache, just go to main memory

Using byte addresses in this example! Addr Bus = 5 bits

Write-through performance

Each miss (read or write) reads a block from mem

• 5 misses \rightarrow 10 mem reads

Each store writes an item to mem

4 mem writes

Using byte addresses in this example! Addr Bus = 5 bits

Write-back performance

Each miss (read or write) reads a block from mem

• 5 misses \rightarrow 10 mem reads

Some evictions write a block to mem

- 1 dirty eviction → 2 mem writes
- (+ 2 dirty evictions later → +4 mem writes)

V	D	Tag	Byte 1	Byte 2	Byte N

V = 1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:

• Set V = 1, D = 0, fill in Tag and Data

When writing line:

• Set D = 1

When evicting line:

- If D = 0: just set V = 0
- If D = 1: write-back Data, then set D = 0, V = 0

Performance: Write-back versus Write-through Assume: large associative cache, 16-byte lines

```
for (i=1; i<n; i++)
A[0] += A[i];
```

```
for (i=0; i<n; i++)
B[i] = A[i]
```

Q: Hit time: write-through vs. write-back?

A: Write-through slower on writes.

Q: Miss penalty: write-through vs. write-back?

A: Write-back slower on evictions.

Q: Writes to main memory are slow!

A: Use a write-back buffer

- A small queue holding dirty lines
- Add to end upon eviction
- Remove from front upon completion

Q: What does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

Write-through is slower

But simpler (memory always consistent)

Write-back is almost always faster

But what about multiple cores sharing memory?

```
// H = 12, W = 10
int A[H][W];

for(x=0; x < W; x++)
   for(y=0; y < H; y++)
    sum += A[y][x];</pre>
```

1	11	21							
		2	12	22					
				က	13	23			
						4	14	24	
								5	15
25									
6	16	26							
		7	17	•••					
				8	18				
						9	19		
								10	20

Every access is a cache miss! (unless *entire* matrix can fit in cache)

Block size = $4 \rightarrow 75\%$ hit rate

Block size = $8 \rightarrow 87.5\%$ hit rate

Block size = $16 \rightarrow 93.75\%$ hit rate

And you can easily prefetch to warm the cache.

1	2	3	4	5	6	7	8	9	10
11	12	13	:						

Memory performance matters!

- often more than CPU performance
- ... because it is the bottleneck, and not improving much
- ... because most programs move a LOT of data

Design space is huge

- Gambling against program behavior
- Cuts across all layers:
 users → programs → os → hardware

Multi-core / Multi-Processor is complicated

- Inconsistent views of memory
- Need to "snoop" in each other's caches
- Extremely complex protocols, very hard to get right