Caches 2

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P & H Chapter 5.2 (writes), 5.3, 5.5

Direct Mapped
+ Smaller

+ Less

+ Less

+ Faster

+ Less

+ Very

— Lots

— Low

— Common

Tag Size
SRAM Overhead
Controller Logic

Speed
Price
Scalability
of conflict misses
Hit rate
Pathological Cases?

Cache Tradeoffs

Fully Associative

N

("

Larger —
More —
More —

Slower —
More —

ot Very —
) Zero +
High +

?

Set Associative Caches

Set Associative Cache

gao (0x000000

Compromise

0x000004

 Each block number <0xooooos

mapped to a single N4 | L oxooo00c

cache line set index (OXOOOOlO

§ €O \0x000014

* Within the set, block 0x000018
can go in any line S’H 0x00Q

0x000020

fgf 0x000024

X00002¢

line O ' 0x000030

set O linel (<0x000034

line 2 0x000038

~ ine 3 ((gxooooac

set 1 line 4 x000040

. (8x000044

line 5 x000048

0x00004c

2-Way Set Associative Cache

Set Associative Cache
Like direct mapped cache

* Only need to check a few lines for each access...
so: fast, scalable, low overhead

Like a fully associative cache

e Several places each block can go...
so: fewer conflict misses, higher hit rate

Tag Index |Offset R w7
«j'd'a -1 o
T <ol o] ¢ ol o el el ¢
54 2
Sef %
o) o) o)
S S S
[H >\ line select /
- 64bytes
\j \ word select 4
hit? data 32°'t

A Simple 2-Way Set Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor 2-Way Set Associative
b $1<M[1] WM Cache
b$2<M13IM , _O O | O /J
b $3eM0] | Tl !
b S3< M[6]mM — ‘N6 g 4
b 2 — 43 \ e‘(S
b $2 <] V tag data

b $2< M[10]R] [2 |G« | (O (6]
b $2«M[12] \|(|0

N\

g; BlLIpo [L[(32
NG

S3

S4 Hits: Misses:

A Pathological Case

Comparing Caches

Processor

b S1 <« M|
b S2 « M|
b S3 « M|
b S3 « M|
b S2 « M|
b S2 « M|
b S2 « M|
lb S2 <« M[8

~ 00 R 00 K

16]

[ERY

Direct Mapped

2-Way Set Associative

Fully Associative

Memory
o[101
1| 103
2 107
3 109
41 113
5[127
6 131
70 137
8| 139
o 149

10| 151

11| 157

12| 163

13| 167

14| 173

15| 179

16| 181

To Do:

* Evicting cache lines
* Picking cache parameters
* Writing using the cache

Cache Parameters

10

miss rate >

Performance Comparison

direct mapped, 2-way, 8-way, fully associative

A

\ 4

cache size >

11

Eviction

Q: Which line should we evict to make room?
For direct-mapped?

A: no choice, must evict the indexed line
For associative caches?

FIFO: oldest line (timestamp per line)

: LRU: least recently used (ts per line)

: LFU: (need a counter per line)

: MRU: most recently used (?!) (ts per line)
: round-robin (need a finger per set)

: random (free!)

: Belady’s: optimal (need time travel)

> > > > > > >

12

Cache Design

Need to determine parameters:

Block size (aka line size)

Number of ways of set-associativity (1, N, o)
Eviction policy

Number of levels of caching, parameters for each
Separate |I-cache from D-cache, or Unified cache
Prefetching policies

Write policy

13

> dmidecode -t cache A Real Example
Cache Information

Configuration: Enabled, Not Socketed, Level 1 Dual-core 3.16GHz Intel

Operational Mode: Write Back :
Installed Size: 128 KB (purChased In 2009)

Error Correction Type: None
Cache Information
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Varies With Memory Address
Installed Size: 6144 KB
Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index@/level:1
cache/index@/type:Data
cache/index@/ways of associativity:8
cache/index@/number_of sets:64
cache/index@/coherency line size:64
cache/index@/size:32K
cache/indexl1l/level:1
cache/index1/type:Instruction
cache/index1/ways_of associativity:8
cache/indexl/number_of sets:64
cache/indexl/coherency line size:64
cache/indexl/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared cpu_list:0-1
cache/index2/ways_of associativity:24
cache/index2/number_of sets:4096
cache/index2/coherency line size:64
cache/index2/size:6144K 14

Dual 32K L1 Instruction caches
* 8-way set associative
* 64 sets
* 64 byte line size

Dual 32K L1 Data caches
 Same as above

Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

4GB Main memory

1TB Disk

Dual-core 3.16GHz |
(purchased in 2009)

A Real Example

ntel

15

Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

16

Experimental Results

10%

Miss 5o,
rate

(e
y - > O e o 64K
—h—
0% | —4 o * 056K
16 32 64 128 256

Block size

Tradeoffs

For a given total cache size,
larger block sizes mean....

 fewer lines

* so fewer tags (and smaller tags for associative caches)
* so less overhead

e and fewer cold misses (within-block “prefetching”)
But

* fewer blocks available (for scattered accesses!)
e so more conflicts

* and miss penalty (time to fetch block) is larger

18

Writing with Caches

19

Q: How to write ¢

CPU

addr
q

q
data

ata”

Cache
SRAM

If data is already in the cache...

No-Write

q
q

Memory
DRAM

* writes invalidate the cache and go directly to memory

Write-Through

* writes go to main memory and cache

Write-Back

* CPU writes only to cache

e cache writes to main memory later (when block is evicted)

Cached Write Policies

20

Q: How to write ¢

ata”

addr

CPU

q
data

Cache
SRAM

If data is not in the cache...

Write-Allocate

 allocate a cache line for new data (and maybe write-through)

No-Write-Allocate

* ignore cache, just go to main memory

q
q

Memory
DRAM

Write Allocation Policies

21

A Simple 2-Way Set Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mapped Cache Memory
b $1 < M[1] + Write-through 2
b $2 <« M[7] + Write-allocate ,
sb S2 > M[O0] 3
sb S1—> M[5] 4
b S2 < M[9] 2
sb $1—> M[5] V tag data :
sb $1—> M[O0] .
9
10
>1 11
52 12
13
>3 14
S4 Hits: Misses: 15
16

22

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem

* 5 misses 2 10 mem reads

Each store writes an item to mem

e 4 mem writes

23

A Simple 2-Way Set Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mapped Cache Memory
b $1< M[1] + Write-back
b $2 < M[7] + Write-allocate
sb S2—>M[0]
sb S1—>M[5]
b $2 < M[9]

sb $1—>M[5] V D tag data
sb S1>M[O0]

0
1
2
3
4
5
6
7
8

S4 Hits: Misses:

24

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem

* 5 misses 2 10 mem reads

Some evictions write a block to mem
1 dirty eviction 2 2 mem writes
 (+ 2 dirty evictions later 2 +4 mem writes)

25

Write-Back Meta-Data

V D Tag Byte 1 Byte 2 ... Byte N

V =1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e IfD=0:justsetV=0
 |f D=1: write-back Data, thensetD =0,V =0

26

Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++) |
A[O] += A[i];

for (1=0; i<n; i++)
B[i] = A[i]

27

Q: Hit time: write-through vs. write-back?

A: Write-through slower on writes.

Q: Miss penalty: write-through vs. write-back?
A: Write-back slower on evictions.

28

Q: Writes to main memory are slow!
A: Use a write-back buffer

* A small queue holding dirty lines
* Add to end upon eviction

 Remove from front upon completion
Q: What does it help?
A: short bursts of writes (but not sustained writes)
A: fast eviction reduces miss penalty

29

Write-through vs. Write-back

Write-through is slower

e But simpler (memory always consistent)

Write-back is almost always faster

e But what about multiple cores sharing memory?

30

// H=12, W = 10
int A[H][W];

14

24

for(x=0; x < W; X++)

15

for(y=0; y < H; y++) -

sum += A[y][x]; 6

16

26

171 ...

18

19

10

20

Every access is a cache miss!

(unless entire matrix can fit in cache)

31

// H=12, W = 10
int A[H][W];

for(y=0; y < H; y++)

for(x=0; x < W; X++)

sum += A[y][x];

Block size = 4 = 75% hit rate
Block size = 8 = 87.5% hit rate
Block size = 16 =2 93.75% hit rate
And you can easily prefetch to warm the cache.

32

Memory performance matters!
e often more than CPU performance
* ... because it is the bottleneck, and not improving much
e ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users = programs = os = hardware

Multi-core / Multi-Processor is complicated
* Inconsistent views of memory
* Need to “snoop” in each other’s caches
e Extremely complex protocols, very hard to get right

33

