Caches

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P & H Chapter 5.1, 5.2 (except writes)

CPU clock rates ~0.2ns — 2ns (5GHz-500MHz)

Technology Capacity S/GB Latency A

Tape 1TB $'1J(7 100s of seconds

Disk 1TB S.(#S Millions cycles (ms)

SSD (Flash) 128G S3 Thousands of cy¢les (us)

DRAM 4GB $28 50-300 cycles (1498 of ns)
SRAM off-chip 4MB Sj\?’7 5-15 cycles (few|ns)
SRAM on-chip 256 KB ?:

o
Others: éDRAM aka 1-T SRAM, FeRAM, C/D, DVD, ...
Q: Can we create illusion of cheap + large + fast?

1-3 cycles (ns)

Memory Pyramid

\ o9\ &
L 'g/ RegFll 1 cycle acces

§° J/ 100s byte?

several KB)

‘ /
\ // L1 Cache 1-3 cycle ackess
A (

L3 becomi
common

5-15 cycle access

4 \suﬂf

€ aCcess

L2 &ache (2-32MB)

'Y (Memory (128MB — few GB) 50-300 c

/ §\; (\ Disk (Many GB — few TB) \ 1000000+
§ cycle access
: N

\

\
These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM)

Memory closer to processor

e small & fast
e stores active data

Memory farther from processor

* big & slow
e stores inactive data

Assumption: Most data is not active. 49/l
Q: How to decide what is active?
A: Some committee decides

g{—a‘hk
A: Programmer decides—

= N

A: Compiler decides
A: OS decides at run-time
]

A: Hardware decides

(ml [T1 e

Q: What is “active” data? Ff/\ewucy J’& \owis
A: Data that will be used Goon)
If Mem([x] is was accessed recently...

... then Mem|[x] is likely to be accessed soon

* Caches exploit temporal locality by putting recently
accessed Mem|[x] higher in the pyramid

... then Mem|[x * €] is likely to be accessed soon

* Caches exploit spatial locality by putting an entire block
containing Mem|[x] higher in the pyramid

Memer\(,\trace

6x7c§£§ ﬁB

©x7c9a2bl19

(54 2bla
Ox7cpa2®1bc9a2b
Ox7cPaz2b

Ox7 2bld

int n =

Locality

int k@@

{ 3, 14, 0, 10 };

= 2) return i,

L

else re

turn fib(i—1)+fib(i—2);

}

NS
> e

int main(int ac, chare &:’é‘av) 1

n_, 1+-#) f

0x0040031c

@x@geﬂs :

\ﬂé T

Memory closer to processor is fast and small

* usually stores subset of memory farther from processor

— “strictly inclusive”

e alternatives:
— strictly exclusive

— mostly inclusive

 Transfer whole blocks
cache lines, e.g:

4kb: disk € ram

i

[T

256b: ram & L2

64b: L2 & L1

{
{

Cache Lookups (Read)

Processor tries to access Mem|x]
Check: is block containing x in the cache?

* Yes: cache hit
— return requested data from cache line

* No: cache miss
— read block from memory (or lower level cache)
— (evict an existing cache line to make room)
— place new block in cache
— return requested data
- and stall the pipeline while all of this happens

CPU Cache Controller Coche Organization
S0

o =] @

Ly o > — e
Z AN == X

4 ‘ @ «lc:)r«

@,
¢

Cache has to be fast and de\n{e
* Gain speed by performing lookups in parallel
— but requirescc.:l_iaes{eal estate for lookup logic

* Reduce lookup logic by limiting where in the cache a
block might be placed

— but might reduce cache effectiveness

10

Three common designs

A given data block can be placed...

 ...inany cache line = Fully Associative

* ...in exactly one cache line = Direct Mapped

e ...in a small set of cache lines = Set Associative

|

—

ST (S L
\66 \ ;./—q éq'lfd\
- —

ﬂ

11

Direct Mapped Cache 0 (OXOOOOOO

0x000004
* Each block number | 0x000008
mapped to a single 8"8888;’;
. . X
cache line index Dl (Ox000014
* Simplest hardware /"/\ }(Oxoooms
0x00001c
l \o DH 37 O (0000020
N Lt _ 0x000024
(& | (0x00002c
nedl L & o [oro000s
ine 1 - L \ 2(0 000038
. g,(X
:!ne ; i((v \ % <0x00003c
ne 0x000040
— S —J U((0x000044
27 0x000048

(0x00004c

Direct Mapped Cache

12

Assume sixteen 64-byte cache lines

Ox7FFF3D4D N
=(111 11111111 1111 0011 11!01 0100 1101
"’ gy 7{gh offsch
TAq e ﬁ
Q 95 (A }\'r ol
= B

Need meta- Freach cache line: \.%M/ \
* valid|bit:|is the cache lin non-emptyc.;% 68‘ s({\
-\tag: hicﬂck is storgd in this Iine(('@,valid)[. Cj

Q: howdto check if X m\lﬁm the cache?
Q: how to cleaf/ache line?

13

Tag

Index

Offset

-
n bit index, m bit offset

Q: How big is cache (data only)?
Q: How much SRAM neequ,(daja +

)

AN

’i
-

Y

L\

Iz

overh

Direct Mapped Cache Size

ead)?

Vh Qw()v\(

14

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus = 5 bits

Processor Direct Mapped Memory
b $1<« M[1] Cache
b 2 M[13] | = O @
b S3 <« M[O0]
b $3 < M[6 4,,, Y L"ﬂ#
b S2 < M[5] > \“e/
b §2<—|V|:6: V tag data
b $2 < M[10] @
b $2<—M:12]—Dé ot | (o) [0
S1| (075 D
S3
S4 Hits: Misses !

15

A Simple Direct Mapped Cache

Using byte addresses in this example! Addr Bus = 5 bits

Processor Direct Mapped Memory

oS1 MI11/ Cache
- O O / Z
——b—-S2~—PA13- —
53 P‘I[Q]]// A \,J__) :
y %
_e—$3—MT5] *‘3 : MO"F?Q

m/ V ta data v
el DT ey [ro3
2; B—i [loo| (13 | 127
$3[(o)] |LL®IB] 37

41 (% Hits: ” Misses: I) ((‘

16

Tag Index |Offset
L
V Tag Block \
i (7 \ o \ ,i'2>
! L |
N\ _f

17

Direct Mapped Cache Size

Tag Index |Offset
/é L—«v\ ol L— 4\ —) — m—-
n bit index, m bit offset

Q: How big is cache (data only)?

Q: Howamuch SRAM neeged data + ovqrhead)2 urw
“hbs . Q ~){ef ohC“

oy 4R
n
(3’2 W =M 1) . 2 \hes =

18

Cache Performance

Cache Performance (very simplified):

L1 (SRAM):yte cache lines, direct mapped
—pData cost: 3 cycle per word access
Lookup cost: 2 cycle
Mem (DRAM): 4GB
Data cost: 50 cycle per word, plus 3 cycle per consecutive word

g (.7¢\e/(QC,r e Hu‘J*

che Miss
150 *E-l'a/ = () peS Co
5 -

16’7‘, J Late
Performan o
Access Airge ;o,ghit,fmiﬁs(l%eﬂqwf hit r ate L {

19

Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

20

Q: How to avoid...
Cold Misses —v 0(‘ % @féjfw/ (I\QGCURL

e Unavoidable? The data was never in the cache...
* Prefetching!

Other Misses

o BU@Q{%S;RA% Céc\fé, k&?&sﬁ‘

* Use a more flexible cache design

Morte SeHVY

21

Bigger cache doesn;,t\apqa,y]srhelp...

Memcpy access trace: 0, 16, 1,17/, 2, 18, 3, 19, 4, 20, ...

Hit rate with four direct-mapped 2-byte cache lines?
o

f&‘z‘/ o7

With eight 2-byte cache lines?

”31—9—-#‘7/ é 7?
With four 4- bhe—cac)h?&wes?
O 2 :

0O N OO U1 A W N = O

Vo)

N
= O

=
N

=
w

=
B

=
(92

=
o)}

=
~N

|
/

\=]

—

=
co

\w

NN
— O

Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted...

... because some other access with the same index
e Conflict Miss

... because the cache is too small
* j.e. the working set of program is larger than the cache
* Capacity Miss

23

Avoiding Misses

Q: How to avoid...
Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Capacity Misses
* Buy more SRAM

Conflict Misses
* Use a more flexible cache design

24

:,‘l.,o.l.._,lgg._-.

 ...inany cache line = Fully Associative

—

C in exactly one cache line = Direct Mapped
e ...in a small set of cache lines = Set Associative

Three common designs

25

Using byte addresses in this example! Addr Bus =5 bits

A Simple Fully Associative Cache

Processor

b S1 < M
b S2 < M
b S3 <« M|
b S3 <« M|
b S2 < M|
b S2 < M[6]
b $2 < M[10]H1
b $2 < M[12]}A

]
3

DU O R
$131_'2§

Fully Associative
Cache

, IOI (IIOI
e o

V tag data

(3 |67

(5 | (32

Misses: ”

Memory
(o 101
P07
HauTom
(29%4
e
10151
N
Wasvm

15K 179

16 181

)

26

Tag Offset o ey
V Tag Block /(ﬁ}\ /—\
- /’é‘/ -
SIS o S L

line select /

- 64bytes

word select 4

-~ 32bits
data

27

Tag

Offset

m bit offset, 2" cache lines

Q: How big is cache (data only)?

Fully Associative Cache Size

Q: How much SRAM needed (data + overhead)?

28

Fully-associative reduces conflict misses...

... assuming goodﬁv%tignhs,trategy

Memcpy access trace: 0, 16, 1,17/, 2, 18, 3, 19, 4, 20, ...

Hit rate with four fully-associative 2-byte cache lines?

0O N OO U1 A W N = O

Vo)

/\ O J /

=
o

[y
[y

L‘“F’*J 5077,

=
N

=
w

[ERY
S

=
(92

=
o)}

=
~N

=
co

=
O

N
o

N
=

29

... but large block size can still reduce hit rate

vector add access trace: 0, 100, 200, 1, 101, 201, 2, 202, ...
Hit rate with four fully-associative 2-byte cache lines?

With two 4-byte cache lines?

30

Cache misses: classification
Cold (aka Compulsory)

* The line is being referenced for the first time
Capacity

* The line was evicted because the cache was too small

* i.e. the working set of program is larger than the cache

Conflict Q&é(FA. cene (’Léeﬁg

 The line was evicted because of another access whose
index conflicted

31

sssss

Caching assumptions
* small working set: 90/10 rule
e can predict future: spatial & temporal locality
Benefits
* big & fast memory built from (big & slow) + (small & fast)
Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

* Fully Associative = higher hit cost, higher hit rate
* Larger block size = lower hit cost, higher miss penalty

Next up: other designs; writing to caches

32

