
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Caches

P & H Chapter 5.1, 5.2 (except writes)

2

Performance

CPU clock rates ~0.2ns – 2ns (5GHz-500MHz)

Technology Capacity $/GB Latency

Tape 1 TB $.17 100s of seconds

Disk 1 TB $.08 Millions cycles (ms)

SSD (Flash) 128GB $3 Thousands of cycles (us)

DRAM 4GB $25 50-300 cycles (10s of ns)

SRAM off-chip 4MB $4k 5-15 cycles (few ns)

SRAM on-chip 256 KB ??? 1-3 cycles (ns)

Others: eDRAM aka 1-T SRAM, FeRAM, CD, DVD, …

Q: Can we create illusion of cheap + large + fast?

3

Memory
Pyramid

Disk (Many GB – few TB)

Memory (128MB – few GB)

L2 Cache (½-32MB)

RegFile
100s bytes

Memory Pyramid

1 cycle access

1-3 cycle access

5-15 cycle access

50-300 cycle access

L3 becoming more
common
(eDRAM ?)

These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM)

L1 Cache
(several KB)

1000000+
cycle access

4

Memory Hierarchy

Memory closer to processor

• small & fast

• stores active data

Memory farther from processor

• big & slow

• stores inactive data

5

Active vs Inactive Data

Assumption: Most data is not active.

Q: How to decide what is active?

A: Some committee decides

A: Programmer decides

A: Compiler decides

A: OS decides at run-time

A: Hardware decides
at run-time

6

Insight of Caches

Q: What is “active” data?

A: Data that will be used soon.

If Mem[x] is was accessed recently...

… then Mem[x] is likely to be accessed soon

• Caches exploit temporal locality by putting recently
accessed Mem[x] higher in the pyramid

… then Mem[x ± ε] is likely to be accessed soon

• Caches exploit spatial locality by putting an entire block
containing Mem[x] higher in the pyramid

7

Locality

Memory trace
0x7c9a2b18
0x7c9a2b19
0x7c9a2b1a
0x7c9a2b1b
0x7c9a2b1c
0x7c9a2b1d
0x7c9a2b1e
0x7c9a2b1f
0x7c9a2b20
0x7c9a2b21
0x7c9a2b22
0x7c9a2b23
0x7c9a2b28
0x7c9a2b2c
0x0040030c
0x00400310
0x7c9a2b04
0x00400314
0x7c9a2b00
0x00400318
0x0040031c
...

0x00000000

0x7c9a2b1f

0x00400318

int n = 4;
int k[] = { 3, 14, 0, 10 };

int fib(int i) {
if (i <= 2) return i;
else return fib(i-1)+fib(i-2);

}

int main(int ac, char **av) {
for (int i = 0; i < n; i++) {

printi(fib(k[i]));
prints("\n");

}
}

8

Memory Hierarchy

Memory closer to processor is fast and small

• usually stores subset of memory farther from processor

– “strictly inclusive”

• alternatives:

– strictly exclusive

– mostly inclusive

• Transfer whole blocks
cache lines, e.g:

4kb: disk ↔ ram

256b: ram ↔ L2

64b: L2 ↔ L1

9

Cache Lookups (Read)

Processor tries to access Mem[x]

Check: is block containing x in the cache?

• Yes: cache hit

– return requested data from cache line

• No: cache miss

– read block from memory (or lower level cache)

– (evict an existing cache line to make room)

– place new block in cache

– return requested data

 and stall the pipeline while all of this happens

10

Cache Organization

Cache has to be fast and dense
• Gain speed by performing lookups in parallel

– but requires die real estate for lookup logic

• Reduce lookup logic by limiting where in the cache a
block might be placed

– but might reduce cache effectiveness

Cache Controller
CPU

11

Three common designs

A given data block can be placed…

• … in any cache line  Fully Associative

• … in exactly one cache line  Direct Mapped

• … in a small set of cache lines  Set Associative

12

Direct Mapped Cache

Direct Mapped Cache
• Each block number

mapped to a single
cache line index

• Simplest hardware

line 0
line 1
line 2
line 3

0x000000

0x000004

0x000008

0x00000c

0x000010

0x000014

0x000018

0x00001c

0x000020

0x000024

0x00002c

0x000030

0x000034

0x000038

0x00003c

0x000040

0x000044

0x000048

0x00004c

13

Tags and Offsets

Assume sixteen 64-byte cache lines

0x7FFF3D4D
= 0111 1111 1111 1111 0011 1101 0100 1101

Need meta-data for each cache line:

• valid bit: is the cache line non-empty?

• tag: which block is stored in this line (if valid)

Q: how to check if X is in the cache?

Q: how to clear a cache line?

14

Direct Mapped Cache Size

n bit index, m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Tag Index Offset

15

MemoryDirect Mapped
Cache

Processor

A Simple Direct Mapped Cache

lb $1  M[1]
lb $2  M[13]
lb $3  M[0]
lb $3  M[6]
lb $2  M[5]
lb $2  M[6]
lb $2  M[10]
lb $2  M[12]

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

A =

16

MemoryDirect Mapped
Cache

Processor

A Simple Direct Mapped Cache

lb $1  M[1]
lb $2  M[13]
lb $3  M[0]
lb $3  M[6]
lb $2  M[5]
lb $2  M[6]
lb $2  M[10]
lb $2  M[12]

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

A =

17

Direct Mapped Cache (Reading)

V Tag Block

Tag Index Offset

18

Direct Mapped Cache Size

n bit index, m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Tag Index Offset

19

Cache Performance

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped

Data cost: 3 cycle per word access

Lookup cost: 2 cycle

Mem (DRAM): 4GB

Data cost: 50 cycle per word, plus 3 cycle per consecutive word

Performance depends on:

Access time for hit, miss penalty, hit rate

20

Misses

Cache misses: classification

The line is being referenced for the first time

• Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

21

Avoiding Misses

Q: How to avoid…

Cold Misses

• Unavoidable? The data was never in the cache…

• Prefetching!

Other Misses

• Buy more SRAM

• Use a more flexible cache design

22

Bigger cache doesn’t always help…

Memcpy access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, …

Hit rate with four direct-mapped 2-byte cache lines?

With eight 2-byte cache lines?

With four 4-byte cache lines?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

23

Misses

Cache misses: classification

The line is being referenced for the first time

• Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted…

… because some other access with the same index

• Conflict Miss

… because the cache is too small

• i.e. the working set of program is larger than the cache

• Capacity Miss

24

Avoiding Misses

Q: How to avoid…

Cold Misses

• Unavoidable? The data was never in the cache…

• Prefetching!

Capacity Misses

• Buy more SRAM

Conflict Misses

• Use a more flexible cache design

25

Three common designs

A given data block can be placed…

• … in any cache line  Fully Associative

• … in exactly one cache line  Direct Mapped

• … in a small set of cache lines  Set Associative

26

MemoryFully Associative
Cache

Processor

A Simple Fully Associative Cache

lb $1  M[1]
lb $2  M[13]
lb $3  M[0]
lb $3  M[6]
lb $2  M[5]
lb $2  M[6]
lb $2  M[10]
lb $2  M[12]

V tag data

$1
$2
$3
$4

Using byte addresses in this example! Addr Bus = 5 bits

0 101
1 103
2 107
3 109
4 113
5 127
6 131
7 137
8 139
9 149

10 151
11 157
12 163
13 167
14 173
15 179
16 181

Hits: Misses:

A =

27

Fully Associative Cache (Reading)

V Tag Block

word select

hit? data

line select

= = = =

32bits

64bytes

Tag Offset

28

Fully Associative Cache Size

m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Tag Offset

, 2n cache lines

29

Fully-associative reduces conflict misses...

… assuming good eviction strategy

Memcpy access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, …

Hit rate with four fully-associative 2-byte cache lines?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

30

… but large block size can still reduce hit rate

vector add access trace: 0, 100, 200, 1, 101, 201, 2, 202, …

Hit rate with four fully-associative 2-byte cache lines?

With two 4-byte cache lines?

31

Misses

Cache misses: classification

Cold (aka Compulsory)

• The line is being referenced for the first time

Capacity

• The line was evicted because the cache was too small

• i.e. the working set of program is larger than the cache

Conflict

• The line was evicted because of another access whose
index conflicted

32

Summary

Caching assumptions

• small working set: 90/10 rule

• can predict future: spatial & temporal locality

Benefits

• big & fast memory built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

• Fully Associative  higher hit cost, higher hit rate

• Larger block size  lower hit cost, higher miss penalty

Next up: other designs; writing to caches

