Caches

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P & H Chapter 5.1, 5.2 (except writes)

CPU clock rates ~0.2ns — 2ns (5GHz-500MHz)

Technology
Tape

Disk

SSD (Flash)
DRAM

SRAM off-chip 4MB
256 KB

SRAM on-chip

S

Capacity S/GB

128G

Latency A

100s of seconds
Millions cycles (r

NS)

Thousands of cytles (us)

50-300 cycles (1
5-15 cycles (few

1-3 cycles (ns)

Others: éDRAI\/I aka 1-T SRAM, FeRAM, CD DVD, .
Q: Can we create illusion of cheap + Iarge + fast?

of ns)
ns)

Memory Pyramid

1 cycle acces

RegFilée

§° i/ 100s bytes

‘ /

\ ,/ L1 Cache 1-3 cycle ackess
(several KB)

L\"(’g“ /

L3 becomi
common

more

L2 §ache (%-32MB) 5-15 cycle dccess »
5o

€ aCCess

' R Memory (128MB — few GB) 50-300 ¢

§ cycle access
/ A

\
These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM)

Memory closer to processor

e small & fast

e stores active data

Memory farther from processor
* big & slow

e stores inactive data

111 L1111 g/

Assumption: Most data is not active. 4s(lo
Q: How to decide what is active?
A: Some committee decides —

g‘(r(*tk
A: Programmer decides—

A: Compiler decides

A: OS decides at run-time

A: Hardware decides

(fmlb T 11 ||||I”_|_|

Q: What is “active” data? ff{\eiwuc; r& \ow s
A: Data that will be used Goon,
If Mem|[x] is was accessed recently...

... then Mem|[x] is likely to be accessed soon

* Caches exploit temporal locality by putting recently
accessed Mem|x] higher in the pyramid

... then Mem|[x x €] is likely to be accessed soon

* Caches exploit spatial locality by putting an entire block
containing Mem{(x] higher in the pyramid

I\/Iemarx;crace

@x7c§£§ ﬁB

Ox7c9a2b1l9

1n'l'n=

Locality

int k@@

{3 14, 0, 10 };

.\.\‘a

g ’ ™ 5 X R
L ! 5 x R Vs - W S R DIEN " S, o
N S N 'W’ ’N"&Q" o PR FT g Sk RSN R R I ORI SO 7
IR U T DT TR IR T A I IR R L BINGOX X
N ; NSRRI ARt R SR R R & & & X

else re

turn fib(i—1)+fib(i—2);

_\t

int main(}

0x0040031c

ac, chaPV*§av) {

2
n.~%:'“
R B % \

@x@égze318 :

Memory closer to processor is fast and small

e usually stores subset of memory farther from processor

— “strictly inclusive”

* alternatives:
— strictly exclusive

— mostly inclusive

* Transfer whole blocks
cache lines, e.g:

4kb: disk €= ram

i

[

256b: ram & L2

64b: L2 & L1

{
{

Cache Lookups (Read)

Processor tries to access Mem|x]
Check: is block containing x in the cache?

* Yes: cache hit

— return requested data from cache line

* No: cache miss
— read block from memory (or lower level cache)
— (evict an existing cache line to make room)
— place new block in cache
— return requested data
—> and stall the pipeline while all of this happens

CPU

Cache Organization

Cache Controller

(

Cache has to be fast and dehse

e Gain speed by performing lookups in parallel
— but requires(_qiaesggal estate for lookup logic

e Reduce lookup logic by limiting where in the cache a

block might be placed

— but might reduce cache effectiveness

10

Three ¢

A given data block can be placed...
 ..in any cache line = Fully Associative
e ...in exactly one cache line = Direct Mapped
 ...in a small set of cache lines = Set Associative

&0 /?41?/;— / 7/60

YV

S
\AA\QJ((_ O

éq# S\

ommon designs

11

Direct Mapped Cache

e Each block number
mapped to a single
cache line index

e Simplest hardware

™

s

%
line O ~ <
line 1 ¥ Y
line 2 A b
line 3 Y Y
___— —J
" 5

{4

&
NN

0 (0xoooooo
0x000004
0x000008

| 0x00000¢
0x000010

-2-(Ox000014
,} (OxOOOOlS
0x00001¢

O (0000020

<0xooooz4
| (0x00002c
0x000030

9 (0x000034
0x000038

% <0x00003c
0x000040

&((0x000044

0x000048
(0x00004c

Direct Mapped Cache

12

Assume sixteen 64-byte cache lines

Ox7FFF3D4D Nz a
= Q111 1111 111111110011 11501 0100 1101
;hé‘“ =2 V‘)’L/
9L R TR
4 PY s
Need meta- \oe

eachl cache line: \
xee | G 3
 yalid|bit:|is the cache line non-empty:

°\tag: hich block is stordd in this Iine(('@valid)sgx q
Q: howdto theck if X is | L&

Q: how to cleaf&a <ache line?

the cache?

13

Tag Index |[Offset
A W
)

n bit index, m bit offset

Q: How big is cache (data only)?
Q: How much SRAM neequ,(da}a +

")

—
> i

2

Direct Mapped Cache Size

overhead)?

\07 -\-(,; O Qx%

14

Using byte addresses in this example! Addr Bus =5 bits

A Simple Direct Mapped Cache

Processor

b S1<« M[1]
b S2 <« M[13]
b S3 <« M[O]
b S3 ¢« M[6]
b $2 < M[5]
b S2 <« M[6]
lb S2 < M[10]
b S2 « M[12]

S1| (675

Cache
A0, 00
QT_) I _) Ilif\?
'\"L> V w ok

Direct Mapped

Memory

15

Using byte addresses in this example! Addr Bus =5 bits

A Simple Direct Mapped Cache

Processor

——St<—M[1]/

—H53—tfot
Ho-53-—=15] ~
lb-$2—=f51 "
Jo-$2— 61
b $2 < M[10]
b $2 < M[12]

(075
(31
(6]
(%

2~ —MA43-] /

Direct Mapped

Cache

k2108 00

e L ,u\’\? ‘—rﬂ'ﬁ‘"

‘\"-5 \ woeX

\h&

V ta data
b loe (o) /05
O
[loo| (13 | 122
t |60 @ (37

Hits: H Misses: “' ‘ ” (‘

Memory

16

Tag Index |[Offset
L
V Tag Block
e\ o \ ,5’23
—rC) | L
) N f

17

Direct Mapped Cache Size

Tag Index |Offset
’%L—'V\'M L = —m-
n bit index, m bit offset

Q: How big is cache (data only)?

Q: Hownmuch SRAM neegj\ed data + OV rhead)? e
lines . v 1€s {e/ ‘hC:Q

ovieg
n
(3’2 - =W i+ v 2 \\hej =

18

Cache Performance

Cache Performance (very simplified):

L1 (SRAM):yte cache lines, direct mapped
—pData cost: 3 cycle per word access

Lookup cost: 2 cycle

Mem (DRAM): 4GB
Data cost: 50 cycle per word, plus 3 cycle per consecutive word

g (7‘\e/ {"r Crche H4-
5 1’{0 4’3-|{ = (O (74,\&6 Cache 55

. o5
Perfojrr?;%’ J (Ld%m

Access J'{Uge ;‘(o,)phit,fmis:su%enqbt% hjj,rate? g {

19

Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

20

Q: How to avoid...
Cold Misses —¥ 0(‘ % flegle- (I\edﬁc‘rcL

e Unavoidable? The data was never in the cache...
* Prefetching!

Other Misses

o Bu@w\q&éﬁéﬁ% (eche Kat?o«-ﬂ‘

* Use a more flexible cache design

Mafe/ S&AM

21

Bigger cache doesn;,t\apala,vlsmelp...

Memcpy access trace: 0, 16, 1,17/, 2, 18, 3, 19, 4, 20, ...

Hit rate with four direct-mapped 2-byte cache lines?
o [

=/ o%

With eight 2-byte cache lines?

Pur 4

1l'Z"—e-——J#L—l
- O 7‘0
With four 4- bke—czn:ﬁe ijes?

\: // J O /‘Zﬁ 19

= 7

o N OO A W N = O

O

(-
= O

[EEY
N

[EEY
w

Y
S

[EEY
ol

[EEY
o

[EEY
~

[EEY
o

N DN
= O

Cache misses: classification
The line is being referenced for the first time
e Cold (aka Compulsory) Miss
The line was in the cache, but has been evicted...
... because some other access with the same index
e Conflict Miss
... because the cache is too small

* i.e. the working set of program is larger than the cache
* Capacity Miss

23

Avoiding Misses

Q: How to avoid...
Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Capacity Misses
* Buy more SRAM
Conflict Misses

* Use a more flexible cache design

24

A giv
e ..inany cache line 2 Fully A '

 * ..inexactly one cache line - Direct I\/Iapped>
e ...in a small set of cache lines = Set Associative

25

Using byte addresses in this example! Addr Bus =5 bits

A Simple Fully Associative Cache

Processor

b S1 <« M
b S2 < M
b S3 « M|
b S3 « M|
b S2 < M|
lb S2 < M[6]
b $2 < M[10 M
b $2 < M[12 [}

]
3

DU O R
3:1:{1“22

Fully Associative
Cache

- IO I, Iél (IIOI
o (st

data

(3 |6 F

15 | (32

Misses:”

Memory

0 101
1

103

o 107
3| 109
2l 113
s 127

(6 131
7 137
sl 139
o[129

10f 151
11\ 157
(112 163
13\ 167
14f 173
15Kk 179
16f 181

S

N
(o)}

Tag Offset N ey
V Tag Block /(&l-\ _—
® ? ® ® ® ® ? ® ® ?
j.(i:) /é‘/%j(i:) WA'® ju(i:) [l).8=>
, - O A% O
| 4e >\ line select /
- 64bytes
\ word select 4
+ 32bits

hit?

data

27

Tag

Offset

m bit offset, 2" cache lines

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

28

Fully-associative reduces conflict misses...

... assuming good eviction strate
g8 M /‘C’? ﬁ ,3 gy
Memcpy access trace: 0, 16, 1,17/, 2, 18, 3, 19, 4, 20, ...
Hit rate with four fully-associative 2-byte cache lines?

|/

S—

e

e

g0,

o NN OOl A W N = O

o e T o e Y S Gy Sy S S)
O oo N O O B W NN B O O

N DN
= O

29

... but large block size can still reduce hit rate
vector add access trace: O, 100, 200, 1, 101, 201, 2, 202, ...
Hit rate with four fully-associative 2-byte cache lines?

With two 4-byte cache lines?

30

Cache misses: classification
Cold (aka Compulsory)

* The line is being referenced for the first time
Capacity

* The line was evicted because the cache was too small

* i.e. the working set of program is larger than the cache

Conflict O & FA., cane ’Lé,,‘,\)

* The line was evicted because of another access whose
index conflicted

31

Caching assumptions
* small working set: 90/10 rule
* can predict future: spatial & temporal locality
Benefits
* big & fast memory built from (big & slow) + (small & fast)
Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

* Fully Associative = higher hit cost, higher hit rate
 Larger block size = lower hit cost, higher miss penalty

Next up: other designs; writing to caches

32

