
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Pipeline Hazards

See: P&H Chapter 4.7

2

Broken Example

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

3

What Can Go Wrong?

Data Hazards

• register file reads occur in stage 2 (IF)

• register file writes occur in stage 5 (WB)

• next instructions may read values about to be written

How to detect? Logic in ID stage:

stall = (ID.rA != 0 && (ID.rA == EX.rD ||
ID.rA == M.rD ||
ID.rA == WB.rD))

|| (same for rB)

4

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addrin
st

P
C

+4

O
P

B
A

R
d

B
D

M
D

P
C

+4
im

m

O
P

R
d

O
P

R
d

PC

inst
mem

Rd

Ra Rb

D
B

A

detect
hazard

Detecting Data Hazards

add r3, r1, r2
sub r5, r3, r5
or r6, r3, r4
add r6, r3, r8

5

Resolving Data Hazards

What to do if data hazard detected?

6

Stalling

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

7

Forwarding Datapath

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

R
d

R
dR
d

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

8

Stalling

How to stall an instruction in ID stage

• prevent IF/ID pipeline register update

– stalls the ID stage instruction

• convert ID stage instr into nop for later stages

– innocuous “bubble” passes through pipeline

• prevent PC update

– stalls the next (IF stage) instruction

9

Forwarding

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

10

Forwarding

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

11

Forwarding

Forward correct value from?

1. ALU output: too late in cycle?

2. EX/MEM.D pipeline register
(output from ALU)

3. WB data value (output from
ALU or memory)

4. MEM output: too late in cycle,
on critical path

to?

a) ID (just after register file)
– maybe pointless?

b) EX, just after ID/EX.A and
ID/EX.B are read

c) MEM, just after EX/MEM.B
is read: on critical path

data
mem

B

A

B

D

M

D
inst

mem

D

B

A

12

Forwarding Path 1

add r4, r1, r2

nop

sub r6, r4, r1

data
mem

inst
mem

D

B

A

13

WB to EX Bypass

WB to EX Bypass

• EX needs value being written by WB

Resolve:

Add bypass from WB final value to start of EX

Detect:

14

Forwarding Path 2

add r4, r1, r2

sub r6, r4, r1

data
mem

inst
mem

D

B

A

15

MEM to EX Bypass

MEM to EX Bypass

• EX needs ALU result that is still in MEM stage

Resolve:

Add a bypass from EX/MEM.D to start of EX

Detect:

16

Forwarding Datapath

data
mem

B

A

B

D

M

D

inst
mem

D

B

A

R
d

R
d

R
b

W
E

W
E

M
C

R
a

M
C

17

Tricky Example

data
mem

inst
mem

D

B

A

add r1, r1, r2

SUB r1, r1, r3

OR r1, r4, r1

18

More Data Hazards

add r4, r1, r2

nop

nop

sub r6, r4, r1

data
mem

inst
mem

D

B

A

19

Register File Bypass

Register File Bypass

• Reading a value that is currently being written

Detect:

((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:

Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
– writes happen at end of first half of each clock cycle

– reads happen during second half of each clock cycle

20

Quiz

Find all hazards, and say how they are resolved:

add r3, r1, r2
sub r3, r2, r1
nand r4, r3, r1
or r0, r3, r4
xor r1, r4, r3
sb r4, 1(r0)

21

Memory Load Data Hazard

lw r4, 20(r8)

sub r6, r4, r1

data
mem

inst
mem

D

B

A

22

Resolving Memory Load Hazard

Load Data Hazard

• Value not available until WB stage

• So: next instruction can’t proceed if hazard detected

Resolution:

• MIPS 2000/3000: one delay slot

– ISA says results of loads are not available until one cycle later

– Assembler inserts nop, or reorders to fill delay slot

• MIPS 4000 onwards: stall

– But really, programmer/compiler reorders to avoid stalling in
the load delay slot

23

Quiz 2

add r3, r1, r2
nand r5, r3, r4

add r2, r6, r3

lw r6, 24(r3)

sw r6, 12(r2)

24

Data Hazard Recap

Delay Slot(s)

• Modify ISA to match implementation

Stall

• Pause current and all subsequent instructions

Forward/Bypass

• Try to steal correct value from elsewhere in pipeline

• Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

25

More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem

D

B

A

PC

+4

26

More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem

D

B

A

PC

+4

27

Control Hazards

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
• i.e. next PC is not known until 2 cycles after branch/jump

Delay Slot
• ISA says N instructions after branch/jump always executed

– MIPS has 1 branch delay slot

Stall (+ Zap)
• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop

• allow branch to continue into EX stage

28

Delay Slot

beq r1, r2, L

ori r2, r0, 1

L: or r3, r1, r4

data
mem

inst
mem

D

B

A

PC

+4

branch
calc

decide
branch

29

Control Hazards: Speculative Execution

Control Hazards
• instructions are fetched in stage 1 (IF)

• branch and jump decisions occur in stage 3 (EX)

• i.e. next PC not known until 2 cycles after branch/jump

Stall

Delay Slot

Speculative Execution
• Guess direction of the branch

– Allow instructions to move through pipeline

– Zap them later if wrong guess

• Useful for long pipelines

30

Loops

31

Branch Prediction

32

Pipelining: What Could Possibly Go Wrong?

Data hazards
• register file reads occur in stage 2 (IF)

• register file writes occur in stage 5 (WB)

• next instructions may read values soon to be written

Control hazards
• branch instruction may change the PC in stage 3 (EX)

• next instructions have already started executing

Structural hazards
• resource contention

• so far: impossible because of ISA and pipeline design

