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Pipeline Hazards

See: P&H Chapter 4.7
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Broken Example

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

lw r6,  4(r3)

or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2
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What Can Go Wrong?

Data Hazards

• register file reads occur in stage 2 (IF) 

• register file writes occur in stage 5 (WB)

• next instructions may read values about to be written

How to detect? Logic in ID stage:

stall = (ID.rA != 0 && (ID.rA == EX.rD || 
ID.rA == M.rD || 
ID.rA == WB.rD))

|| (same for rB)
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Detecting Data Hazards

add r3, r1, r2
sub r5, r3, r5
or r6, r3, r4 
add r6, r3, r8
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Resolving Data Hazards

What to do if data hazard detected?
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Stalling

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8
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Forwarding Datapath
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Stalling

How to stall an instruction in ID stage

• prevent IF/ID pipeline register update

– stalls the ID stage instruction

• convert ID stage instr into nop for later stages

– innocuous “bubble” passes through pipeline

• prevent PC update

– stalls the next (IF stage) instruction
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Forwarding

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8



10

Forwarding

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r4

lw r6,  4(r3)

or r5, r3, r5

sw r6, 12(r3)
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Forwarding

Forward correct value from?

1. ALU output: too late in cycle?

2. EX/MEM.D pipeline register 
(output from ALU)

3. WB data value (output from 
ALU or memory)

4. MEM output: too late in cycle,
on critical path

to?

a) ID (just after register file)
– maybe pointless?

b) EX, just after ID/EX.A and 
ID/EX.B are read

c) MEM, just after EX/MEM.B 
is read: on critical path
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Forwarding Path 1

add r4, r1, r2

nop

sub r6, r4, r1
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WB to EX Bypass

WB to EX Bypass

• EX needs value being written by WB

Resolve:

Add bypass from WB final value to start of EX

Detect:
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Forwarding Path 2

add r4, r1, r2

sub r6, r4, r1
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MEM to EX Bypass

MEM to EX Bypass

• EX needs ALU result that is still in MEM stage

Resolve:

Add a bypass from EX/MEM.D to start of EX

Detect:
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Forwarding Datapath
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Tricky Example
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add r1, r1, r2

SUB r1, r1, r3

OR r1, r4, r1
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More Data Hazards

add r4, r1, r2

nop

nop

sub r6, r4, r1
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Register File Bypass

Register File Bypass

• Reading a value that is currently being written

Detect:

((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:

Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
– writes happen at end of first half of each clock cycle

– reads happen during second half of each clock cycle



20

Quiz

Find all hazards, and say how they are resolved:

add r3, r1, r2
sub r3, r2, r1
nand r4, r3, r1
or r0, r3, r4
xor r1, r4, r3
sb r4, 1(r0)
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Memory Load Data Hazard

lw r4, 20(r8)

sub r6, r4, r1
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Resolving Memory Load Hazard

Load Data Hazard

• Value not available until WB stage 

• So: next instruction can’t proceed if hazard detected

Resolution:

• MIPS 2000/3000: one delay slot

– ISA says results of loads are not available until one cycle later

– Assembler inserts nop, or reorders to fill delay slot

• MIPS 4000 onwards: stall

– But really, programmer/compiler reorders to avoid stalling in 
the load delay slot
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Quiz 2

add  r3, r1, r2
nand r5, r3, r4

add  r2, r6, r3

lw r6, 24(r3)

sw r6, 12(r2)
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Data Hazard Recap

Delay Slot(s)

• Modify ISA to match implementation

Stall

• Pause current and all subsequent instructions

Forward/Bypass

• Try to steal correct value from elsewhere in pipeline

• Otherwise, fall back to stalling or require a delay slot

Tradeoffs?
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More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4
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More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4
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Control Hazards

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX) 
• i.e. next PC is not known until 2 cycles after branch/jump

Delay Slot
• ISA says N instructions after branch/jump always executed

– MIPS has 1 branch delay slot

Stall (+ Zap)
• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop

• allow branch to continue into EX stage
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Delay Slot

beq r1, r2, L

ori r2, r0, 1

L: or r3, r1, r4
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Control Hazards: Speculative Execution

Control Hazards
• instructions are fetched in stage 1 (IF)

• branch and jump decisions occur in stage 3 (EX) 

• i.e. next PC not known until 2 cycles after branch/jump

Stall

Delay Slot

Speculative Execution
• Guess direction of the branch

– Allow instructions to move through pipeline

– Zap them later if wrong guess

• Useful for long pipelines
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Loops
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Branch Prediction



32

Pipelining: What Could Possibly Go Wrong?

Data hazards
• register file reads occur in stage 2 (IF) 

• register file writes occur in stage 5 (WB)

• next instructions may read values soon to be written

Control hazards
• branch instruction may change the PC in stage 3 (EX)

• next instructions have already started executing

Structural hazards
• resource contention

• so far: impossible because of ISA and pipeline design


