Pipeline Hazards

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H Chapter 4.7

Clock cycle

1

2

3

A

Broken Example

IF |

ID

IF |

WB

MEM

WB

What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (IF)
 register file writes occur in stage 5 (WB)
* next instructions may read values about to be written

How to detect? Logic in ID stage:

stall = (ID.rA '=0 && (ID.rA == EX.rD ||
ID.rA ==M.rD | |
ID.rA == WB.rD))

|| (same for rB)

Detecting Data Hazards

add r3,rl1, r2 Rd A<
sub r5, r3, r5 (D > O SHa) =S
orr6, r3, rd Bl oo =N\ l
add r6, r3, r8 + |
= Ra Rb addr
A = >
g _>/ ol din dout | E /
é—_\
_ detect | ¥ ~| [Mmem
PC ™ é hazard = \
© ®) ®)
n (a'et (a'et (a'et
: & (al (al (al
i X O O O

IF/ID ID/EX EX/MEM MEM/WB

4

What to do if data hazard detected?

addr3,rl, r2

subr5, r3, r5

orre, r3,rd

add r6, r3, r8

Clock cycle

1

2

3

4

5

6

7

\g

)
'/I

N

2
8

W

(e

Iy

1)

1)

1)

i3

inst

Tt

rD B
rA rB

Forwarding Datapath

—>
data
Bl
> mem

<

op || WE | Rd

op || WE | Rd

Stalling

How to stall an instruction in ID stage

 prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

add r3,

sub r5,

or ro6,

add r6,

rl,

r3,

r2

, 5

, r4

r8

Clock cycle

2

3

£
30

\F

104

Is

e

Forwarding

Clock cycle
1 2 3 4 5 6 7 8

addr3,rl, r2

sub r5, r3, rd

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

10

Forwarding

1D (A a Q > 0 D 2D
inst B B 5
mem ata

AﬁA}—> @

l

1. ALU output: too Idte in cycle?
2. EX/MEM.D pipeling register

(just after register file)

Forward correct value from? to?
@
maybe pointless?

(output from ALU @just after ID/EX.A and
3. WB data value (o@put from ID/EX.B are read

ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too I%e in cycle, is read: on critical path

on critical path

11

-
inst

mem

LW

a8drd, rl, r2

Jod

subr6, r4, rl

data

, =y

FoIp e M
0 ¢

\ 4

WB to EX Bypass
* EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

13

inst
1=

/W

ﬁdrll, rl, r2

subr6, r4, rl

data
mem

I

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

15

Forwarding Datapath

inst
mem

o

data
mem

<

Rb

Rd

Ra

MC || WE

Rd

MC || WE

16

inst
mem

SUB 1,

ad ‘@ rl, r2
b r3

OR 1, rﬂ@

\4

inst

mem

J

addr4, rl, r2

N\

0

subr6, r4, rl

Ex

Register File Bypass

Register File Bypass

e Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:
Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

19

Find all hazards, and say how they are resolved:

add r3, rl, r2
sub r3, r2, rl \]

nhand 4, r3, rl
s B

20

inst

mem

lw r4, 20(r8)

subr6, r4, rl

Resolving Memory Load Hazard

Load Data Hazard

* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
 MIPS 2000/30

— ISA says results 0

00: one delay slot
fable until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in

the load delay slot L U\)
O 2

22

add (T3 ri1, r2
nand r5, @ r4a M —0 X

add r @) —X
L %@ R Epes

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

* Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
* Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

24

rrrrrrrrrrr

(0 beqrl, r2, L

1Y add r3, r0, r3

(7 sub r5, r4, r6
(C
L:orr3,r2,r4

\4
25

S 06

inst
mem

L

DK
(0 beqrl, r2,L
1Y add r3, r0, r3

(7 sub r5, r4, r6
(C
L:orr3,r2,r4

3T
o

]

\4

26

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/Jump always executed
— MIPS has 1 branch delay slot ﬁ

Stall (+ Zap) A {) D

e prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

 allow branch to continue into EX stage

27

Delay Slot

data

e

< decide
¢ branc
@

mem

beqrl, r2, L

orir2,r0, 1

L:orr3,rl, r4

\4

28

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot
Speculative Execution
e branch

* Guessdi '
— Allow instructons to move through pipeline

— Zap them later if wrong guess
e Useful for long pipelines

My Tasen

29

ooooo

\

Pipelining: What Could Possibly Go Wrong?

Data hazards
 register file reads occur in stage 2 (IF)
 register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards
* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards
* resource contention
e so far: impossible because of ISA and pipeline design

32

