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What Can Go Wrong?

Data Hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
How to detect? Logic in ID stage:

stall = (ID.rA != 0 && (ID.rA == EX.rD ||
ID.rA ==M.rD | |
ID.rA == WB.rD))

|| (same for rB)



Detecting Data Hazards
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What to do if data hazard detected?



addr3,rl, r2

subr5, r3, r5

orrb, r3,rd

add r6, r3, r8
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Stalling

How to stall an instruction in ID stage
» prevent IF/ID pipeline register update
— stalls the ID stage instruction
e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

e prevent PC update

— stalls the next (IF stage) instruction
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addr3, rl, r2

subr5, r3, rd

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)
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Forwarding
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1. ALU output: too late in cycle?
2. EX/MEM.D pipeling register

(just after register file)

Forward correct value from? to?
@
maybe pointless?

(output from ALU IQ_Ljust after ID/EX.A and
3. WB data value (o@ut from ID/EX.B are read

ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too I"e/l{e in cycle, is read: on critical path

on critical path

11



Ab—l4 q if, : — Forwarding Path 1
2D & \ : %
e Wl }} dlt
s & e
LW :
aeerd, rl, r2 lF ‘v GY M (IJ&
Nep| | 1F 1D €K M
SubTe D ¢

\ 4



WB to EX Bypass
* EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

to EX Bypass
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MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:
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Forwarding Datapath
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Register File Bypass

e Reading a value that is currently being written

Detect:
| ((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

K B S
Resolve:

Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle
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Find all hazards, and say how they are resolved:

add r3, rl, r2
sub r3, r2, ri 1
hand \

or
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Resolving Memory Load Hazard

Load Data Hazard

* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
 MIPS 2000/30

— ISA says results o

00: one delay slot
fable until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in

the load delay slot L UJ
) 8
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Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?
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Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/Jump always executed
— MIPS has 1 branch delay slot 5

Stall (+ Zap) A \D )O

e prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage
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Delay Slot
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Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot
Speculative Execution
e branch

* Guessdi '
— Allow instruckons to move through pipeline

— Zap them later if wrong guess
e Useful for long pipelines

My Teder
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Pipelining: What Could Possibly Go Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards
* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards
* resource contention
e so far: impossible because of ISA and pipeline design
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