Pipeline Hazards

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H Chapter 4.7

Clock cycle

1

2

3

A

Broken Example

IF |

ID

IF |

WB

MEM

WB

What Can Go Wrong?

Data Hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
How to detect? Logic in ID stage:

stall = (ID.rA != 0 && (ID.rA == EX.rD ||
ID.rA ==M.rD | |
ID.rA == WB.rD))

|| (same for rB)

Detecting Data Hazards

APPI<pF—
addr3,rl, r2 Rd
sub r5, r3, r5 3{D > ‘) SHa) =N
orr6,r3, rd B =l oo N\ l
add r6, r3, r8 + |
= Ra Rb addr
A c RS
' £ — @ = din dout) 2 /
_ detect | ¥ N .
pc| 2| S| \hazard/ =
(a1
© © ©
(a'et (a'et (a'et
v
: & (al (al (al
O O O
€ \k

IF/ID ID/EX EX/MEM MEM/WB

4

What to do if data hazard detected?

addr3,rl, r2

subr5, r3, r5

orrb, r3,rd

add r6, r3, r8

Clock cycle

2

3

4

5

6

7

14

)
'(I

K.

2
2

W

‘ v

D

1L

1)

1)

13

=
M
3
v
Inst

rD B
rA rB

SU
nop D

/stall J

Forwarding Datapath

__9:]5::}9l) l D
data

mem

Op || WE || Rd

Stalling

How to stall an instruction in ID stage
» prevent IF/ID pipeline register update
— stalls the ID stage instruction
e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

e prevent PC update

— stalls the next (IF stage) instruction

add r3,

sub rb5,

orr6,

add r6,

rl,

r3,

r2

, 5

,rd

rs

Clock cycle

1

2

3

EX

>

\F

104

Is

\4

addr3, rl, r2

subr5, r3, rd

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

1

Clock cycle
2

Forwarding

10

Forwarding

>

R0 oy
(D q > D D>

inst B 0B
mem ata

em

l

1. ALU output: too late in cycle?
2. EX/MEM.D pipeling register

(just after register file)

Forward correct value from? to?
@
maybe pointless?

(output from ALU IQ_Ljust after ID/EX.A and
3. WB data value (o@ut from ID/EX.B are read

ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too I"e/l{e in cycle, is read: on critical path

on critical path

11

Ab—l4 q if, : — Forwarding Path 1
2D & \ : %
e Wl }} dlt
s & e
LW :
aeerd, rl, r2 lF ‘v GY M (IJ&
Nep| | 1F 1D €K M
SubTe D ¢

\ 4

WB to EX Bypass
* EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

to EX Bypass

13

inst
mem

/W
ﬁ@' rd, rl, r2

subr6, r4, rl

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

15

Forwarding Datapath

= l > D EFAN
inst |
mem data
> B[mem _>M_)/
© ©
o o foa
(o'
&

MC || WE
MC || WE

16

inst

mem

ad t@ rl, r2
SUB r1, r3

OR 1, rﬂ@

\4

! \
mem

data

) A
D
inst B
mem
W,
addr4, rl, r2 ((/
M{
subr6, r4, rl

Ex

\4

Register File Bypass

e Reading a value that is currently being written

Detect:
| ((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

K B S
Resolve:

Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

19

Find all hazards, and say how they are resolved:

add r3, rl, r2
sub r3, r2, ri 1
hand \

or

20

aaaaaaaaaaaaaaaaaaaa

inst

mem

lw rd, 20(r8)

subr6, r4, rl

=7
o

data
mem |

éé%

>

Resolving Memory Load Hazard

Load Data Hazard

* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
 MIPS 2000/30

— ISA says results o

00: one delay slot
fable until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in

the load delay slot L UJ
) 8

22

add (T3) rl, r2
nand r5, @ ra M —0 X

add 3D W —X
L %@) R Gy
g‘ 12 WS =X

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

24

rrrrrrrrrrr

506 ADD

inst Al
mem| | | Lfn >N\
B> |
l —>
R @ g
4" >

(0 beqrl, r2,L F

1Y add r3, r0, r3

” sub r5, r4, r6
(C
L:orr3,r2,r4d

\4

25

rrrrrrrrrrr

S 06

inst

mem Sl

(O beqrl, r2,L

1Y add r3, r0, r3

” sub r5, r4, r6

(C —
L:orr3,r2,r4d \'

26

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/Jump always executed
— MIPS has 1 branch delay slot 5

Stall (+ Zap) A \D)O

e prevent PC update

 clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

27

Delay Slot

data

mem |

beqrl, r2, L

orir2, r0, 1

L:orr3,rl, rd

\4

28

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot
Speculative Execution
e branch

* Guessdi '
— Allow instruckons to move through pipeline

— Zap them later if wrong guess
e Useful for long pipelines

My Teder

29

!

L,JW)&Z(”?%@

=

=9 FQND
sl e

P

—~ =of—

G}Jd)f@ Né\ T&F

dest

Pipelining: What Could Possibly Go Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards
* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards
* resource contention
e so far: impossible because of ISA and pipeline design

32

