RISC Pipeline

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H Chapter 4.6

A Processor

. >
memory nst :
reg-lster > alu
file
—Te— addr
PAC > din dout B
offset control cmp
¥ <« memory
target
new
«— imm
pC N—s extend

A Processor

memory register

file

Basic Pipeline

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)

— update register file

Slides thanks to Sally McKee & Kavita Bala

Pipelined Implementat ion

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers to isolate signals between
different stages

Pipelined Processor

5
memory register
file

+4

S

IF/ID ID/EX EX/MEM MEM/WB

compute
jump/branch
targets

Write-

Stage 1: Instruction Fetch

Fetch a new instruction cycle
* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for now)

Write values of interest to
* |nstruction bits (for later decoding)
* PC+4 (for later computing branch targets)

instruction
memory

aAddr mc

\ 4
inst

00 = read word

Rest of pipeline

PC+4

pcsel

Stage 2: Instruction Decode

On cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to

* Control information, Rd index, immediates, offsets, ...
 Contents of Ra, Rb
* PC+4 (for computing branch targets later)

Stage 1: Instruction Fetch

inst

WE
Rd
D

register
file

B

Ra Rb

extend

PC+4

IF/ID

PC+4|llimm

ctrl

ID/EX

Rest of pipeline

10

Stage 3: Execute

On cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to
* Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

11

EX

EX

Qui|odid jo 159y

1410

branch?

N

L

d

wwii

1410

pcsel

pcreg

9pP029(uoilonil

S

<

bs

pca

EX/MEM

ID/EX

12

Stage 4: Memory

On cycle:
e Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to
e Control information, Rd index, ...
* Result of memory operation
* Pass result of ALU operation

MEM

13

MEM

Qui|odid jo 159y

| 3
2
al W EE
L
=
F - og
_ O
&
dm
A
=
L
g el
>
L

91N29X7J :€ 93els

Stage 5: Write-back

On cycle:
 Read MEM/WSB pipeline register to get values and control bits
* Select value and write to register file

15

WB

result

Stage 4: Memory

dest

MEM/WB

16

WB

APPI<pF—
inst Rd
INS >/p) a >l O =\
mem - Bl m =\
M= Ra Rb addr
o > d S SV

>

i/

m

v

\
3
D
3

—
+
< g
PC| 9
(ol
e e e
" a'el a'el a'el
—
(ol (ol (ol
N ®) ®) ®)
—

IF/ID ID/EX EX/MEM MEM/WB

17

add
nand
1w
add
SW

r3,
ro,
r4g,
rS5,
r/,

rl, r2;
r4, r5;
20(r2);
r2, r5;
12(r3);

18

APPI<pF—
inst Rd
INS >/p) a >l O =\
mem - Bl m =\
M= Ra Rb addr
o > d S SV

>

i/

m

v

\
3
D
3

—
+
< g
PC| 9
(ol
e e e
" a'el a'el a'el
—
(ol (ol (ol
N ®) ®) ®)
—

IF/ID ID/EX EX/MEM MEM/WB

19

add

nand

add

SW

Clock cycle

1 2 3 4 6 7 3 9
" N
IF (|| ID ||| EX [|[MEMI\| WB
IF (|| ID ||| EX [[MEM][{WB
IF || 1D || EX AMEM WB
|
IF 11 1D | EX [[MEM)[WB
IF)‘ ID (|| EX ||[MEM|[|WB
¢ 4
Latency: g (/70(65/(“5 ‘ CPI = f\V/ (O

Throughput: |(Mg}/w/u“@
Concurrency: 5

20

Pipelining Recap

Powerful technique for masking latencies
* Logically, instructions execute one at a time

* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

21

