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Basic Pipeline

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)

— update register file

Slides thanks to Sally McKee & Kavita Bala



Pipelined Implementat ion

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers to isolate signals between
different stages



Pipelined Processor
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Stage 1: Instruction Fetch

Fetch a new instruction cycle
* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for now)

Write values of interest to
* |nstruction bits (for later decoding)
* PC+4 (for later computing branch targets)
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Stage 2: Instruction Decode

On cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to

* Control information, Rd index, immediates, offsets, ...
 Contents of Ra, Rb
* PC+4 (for computing branch targets later)
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Stage 3: Execute

On cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to
* Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction
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Stage 4: Memory

On cycle:
e Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to
e Control information, Rd index, ...
* Result of memory operation
* Pass result of ALU operation

MEM
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Stage 5: Write-back

On cycle:
 Read MEM/WSB pipeline register to get values and control bits
* Select value and write to register file
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Pipelining Recap

Powerful technique for masking latencies
* Logically, instructions execute one at a time

* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)
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