
© Kavita Bala, Computer Science, Cornell University

Kevin Walsh

CS 3410, Spring 2010

Computer Science

Cornell University

Pipelining

See: P&H Chapter 4.5

© Kavita Bala, Computer Science, Cornell University 2

The Kids

Alice

Bob

They don’t always get along…

© Kavita Bala, Computer Science, Cornell University 3

The Bicycle

© Kavita Bala, Computer Science, Cornell University 4

The Materials

Saw Drill

Glue Paint

© Kavita Bala, Computer Science, Cornell University 5

The Instructions

N pieces, each built following same sequence:

Saw Drill Glue Paint

© Kavita Bala, Computer Science, Cornell University 6

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished

Repeat for remaining tasks

No possibility for conflicts

© Kavita Bala, Computer Science, Cornell University 7

Elapsed Time for Alice: 4
Elapsed Time for Bob: 4
Total elapsed time: 4*N
Can we do better?

Sequential Performance

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 8

Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

AliceBobCarolDave

© Kavita Bala, Computer Science, Cornell University 9

Pipelined Performance

time
1 2 3 4 5 6 7…

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 10

Unequal Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 11

Poorly-balanced Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 12

Re-Balanced Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 13

Splitting Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 45+45 min

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 14

Pipeline Hazards

0h 1h 2h 3h…

Q: What if glue step of task 3 depends on output of task 1?

Latency:
Throughput:
Concurrency:

© Kavita Bala, Computer Science, Cornell University 15

Lessons

Principle:

Latencies can be masked by parallel execution

Pipelining:
• Identify pipeline stages

• Isolate stages from each other

• Resolve pipeline hazards

© Kavita Bala, Computer Science, Cornell University 16

A Processor

alu

PC

imm

memo

ry

mem

ory

din
do

ut

addr

target

offset cmpcontrol

=?

new

pc

register

file

inst

extend

+4 +4

© Kavita Bala, Computer Science, Cornell University 17

Write-

BackMemory
Instruction

Fetch Execute

Instruction

Decode

register

file

control

A Processor

alu

imm

mem

ory

din
do

ut

addr

inst

PC

memo

ry

compute
jump/branch

targets

new

pc

+4

extend

© Kavita Bala, Computer Science, Cornell University 18

Basic Pipeline

Five stage “RISC” load-store architecture
1. Instruction fetch (IF)

– get instruction from memory, increment PC

2. Instruction Decode (ID)
– translate opcode into control signals and read registers

3. Execute (EX)
– perform ALU operation, compute jump/branch targets

4. Memory (MEM)
– access memory if needed

5. Writeback (WB)
– update register file

Slides thanks to Sally McKee & Kavita Bala

© Kavita Bala, Computer Science, Cornell University 19

Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers to isolate signals between
different stages

