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The Kids

Alice

Bob

They don’t always get along…
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The Bicycle
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The Materials

Saw Drill

Glue Paint
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The Instructions

N pieces, each built following same sequence:

Saw Drill Glue Paint
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Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished

Repeat for remaining tasks

No possibility for conflicts
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Elapsed Time for Alice: 4
Elapsed Time for Bob: 4
Total elapsed time: 4*N
Can we do better?

Sequential Performance

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency: 
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Design 2: Pipelined Design

Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

AliceBobCarolDave
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Pipelined Performance

time
1 2 3 4 5 6 7…

Latency:
Throughput:
Concurrency: 
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Unequal Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency: 
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Poorly-balanced Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency: 
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Re-Balanced Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 90 min

Latency:
Throughput:
Concurrency: 
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Splitting Pipeline Stages

0h 1h 2h 3h…

15 min 30 min 45 min 45+45 min

Latency:
Throughput:
Concurrency: 
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Pipeline Hazards

0h 1h 2h 3h…

Q: What if glue step of task 3 depends on output of task 1?

Latency:
Throughput:
Concurrency: 
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Lessons

Principle:

Latencies can be masked by parallel execution

Pipelining:
• Identify pipeline stages

• Isolate stages from each other

• Resolve pipeline hazards
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Basic Pipeline

Five stage “RISC” load-store architecture
1. Instruction fetch (IF)

– get instruction from memory, increment PC

2. Instruction Decode (ID)
– translate opcode into control signals and read registers

3. Execute (EX)
– perform ALU operation,  compute jump/branch targets

4. Memory (MEM)
– access memory if needed

5. Writeback (WB)
– update register file

Slides thanks to Sally McKee & Kavita Bala
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Pipelined Implementation

Break instructions across multiple clock cycles 
(five, in this case)

Design a separate stage for the execution 
performed during each clock cycle

Add pipeline registers to isolate signals between 
different stages


