Performance

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H 1.4

Design Goals

What to look for in a computer system?
ﬂe/s (8 “"f& T\' v €_ * Correctness: negotiable?

*Cost

—purchase cost = f(silicon size = gate

\:’LO € S count, economics)

—operating cost = f(energy, cooling)
~ —operating cost >= purchase cost
C_a fac. 5"’7 eaty »'Cj
a/ / r * Efficiency
—

—power = f(transistor usage, voltage, wire
size, clock rate, ...)

el
> | J g o

¢ Intel Core i7 Bloomfield: 130 Watts
>§’ * AMD Turion: 35 Watts
< b 5 ¢ Intel Core 2 Solo: 5.5 Watts
* Performance

{; Q S * Other: availability, size, greenness,
features, ...
cheQ

Performance

How to measure performance?

GHz (billions of cycles per second)
PS MIPS (millions of instructions per
second)

MFLOPS (millions of floating point

M "; L Q {5 operations per second)

benchmarks (SPEC, TPC, ...)

€hs 2 o K{/;d/un;(AS

Metrics
latency: how long to finish my
\/\/L IQ/C program
throughput: how much work
finished per unit time

How Fast?

@
<
@)
oQ
V/

Mem Reg.

5 . >
> File
> L
/ 68/9/9 gates
PC l ~ 3 gates
T \4
control
J 60/6/21 gates
Assumptions:
* alu: 32 bit ripple carry + some muxes
* next PC: 30 bit ripple carry
* control: minimized for delay
* program memory: 16 ns
* register file: 2 ns access
* ignore wires, register setup time
e transistors: 2 ns per gate All signals are stable
Better Still: 80 gates = 160 ns; 21 gates =42 ns
* next PC: cheapest adder faster than 21 gate delays after clock edge
Better:

, - ~ 6 MHz; ~ 24MHz;
* alu: 32 bit carry lookahead + some muxes

* next PC: 30 bit carry lookahead y
Note! 1 light ns=1ft

E=)

32 Bit Adder Design
Ripple Carry

2-Way Carry-Skip
3-Way Carry-Skip
4-Way Carry-Skip

Space
= 300 gates
=~ 360 gates
= 500 gates
=~ 600 gates
= 550 gates

Split Look-Ahead

=~ 800 gates

~
~

~
~

~
~

~
~

~
~

Time
64 gate delays
35 gate delays
22 gate delays
18 gate delays
16 gate delays

—_—

~
~

10 gate delaggs)

Full Look-Ahead

= 1200 gates

= 5 gate delays

Optimization: Summar Y

Critical Path
* Longest path from a register output to a register input

* Determines minimum cycle, maximum clock frequency

Strategy 1
e Optimize for delay on the critical path
* Optimize for size / power / simplicity elsewhere

Processor Clock Cycle

P register
file
_- |€
=? [¢
conitg cmp
imm
N\ > extend

memory

memory

Processor Clock Cycle

memory

L ofst Cage L\/\)/LH/L&/,_

\Q’Qj%/ (ﬁvt,‘

B randny :)\‘W{i,

Multi-Cycle Instructions

Strategy 2

* Multiple cycles to complete a single instruction

E.g: Assume: o1 1%
* load/store: 100 ns)k >/ | 0O nS
* arithmetic: 50 ns N & MPp X
* branches: 33 ns 20 12
Multi-Cycle CPU S0 M ‘/‘%ster than Single-Cycle CPU?
30 MHz (33 ns cycle) with 10 MHz (100 ns cycle) with

— 3 cycles per load/store
— 2 cycles per arithmetic
— 1 cycle per branch

— 1 cycle per instruction

Instruction mix for some program P, assume:

oad/store cycles / instruction)
arithmeti 2 cycles / instruction)

anches \(1 cycle / instruction)

Multi-Cycle performance for program P:
3*25+2*.60+1%*.15=2.1

average cycles per instruction (CPI) & 2.1 A \ 5 M HZ

KMﬁ-Cycleg%@_m 9 L = (9 7 1F5
Single-Cycle @ I0MHz — | ¢f |\ = (& 1) 7/
C Single-Cycle @ 15 MAZN— ¢y = 15 MY 71

800 MHz PIIl “faster” than 1 GHz P4

10

CPI

Example

Goal:
Make P run 2x faster via faster arithmetic instructions

1
. . o
Instruction mix (for P): B 3< 3

* 25% load/store, CPI =/ - P @

* 60% arithmetic, CPI = [.2 - ¢ ° =

* 15% branches, CPI= 1S . \e —

—_— - Pz
[// z . ' \ ¢ b ‘ ¢ Og

|

11

Amdahl’s Law
-
Execution time after improvement = SS%

U5 s
tion time affected by improvement

—— + execution time unaffected
amount of improvement g

Or:
Speedup is limited bymf improved feature
N
Corollary: ConS7 \3
Make the co Casefast A @€x&<c. Tt
Caveat:

Law of diminishing returns

12

