
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Performance

See: P&H 1.4

2

Design Goals

What to look for in a computer system?
• Correctness: negotiable?

• Cost

–purchase cost = f(silicon size = gate
count, economics)

–operating cost = f(energy, cooling)

–operating cost >= purchase cost

• Efficiency

–power = f(transistor usage, voltage, wire
size, clock rate, …)

–heat = f(power)

• Intel Core i7 Bloomfield: 130 Watts

• AMD Turion: 35 Watts

• Intel Core 2 Solo: 5.5 Watts

• Performance

• Other: availability, size, greenness,
features, …

3

Performance

How to measure performance?
GHz (billions of cycles per second)
MIPS (millions of instructions per
second)
MFLOPS (millions of floating point
operations per second)
benchmarks (SPEC, TPC, …)

Metrics
latency: how long to finish my
program
throughput: how much work
finished per unit time

4

How Fast?

ALU

PC

Prog.
Mem

control
new
pc

Reg.
File

68/9/9 gates

60/6/21 gates

~ 3 gates

All signals are stable
80 gates = 160 ns; 21 gates = 42 ns

after clock edge

 ~ 6 MHz; ~ 24MHz;

Assumptions:
• alu: 32 bit ripple carry + some muxes
• next PC: 30 bit ripple carry
• control: minimized for delay
• program memory: 16 ns
• register file: 2 ns access
• ignore wires, register setup time
• transistors: 2 ns per gate

Better Still:
• next PC: cheapest adder faster than 21 gate delays

Better:
• alu: 32 bit carry lookahead + some muxes
• next PC: 30 bit carry lookahead

Note! 1 light ns = 1 ft

5

Adder Performance

32 Bit Adder Design Space Time

Ripple Carry ≈ 300 gates ≈ 64 gate delays

2-Way Carry-Skip ≈ 360 gates ≈ 35 gate delays

3-Way Carry-Skip ≈ 500 gates ≈ 22 gate delays

4-Way Carry-Skip ≈ 600 gates ≈ 18 gate delays

2-Way Look-Ahead ≈ 550 gates ≈ 16 gate delays

Split Look-Ahead ≈ 800 gates ≈ 10 gate delays

Full Look-Ahead ≈ 1200 gates ≈ 5 gate delays

6

Optimization: Summary

Critical Path

• Longest path from a register output to a register input

• Determines minimum cycle, maximum clock frequency

Strategy 1

• Optimize for delay on the critical path

• Optimize for size / power / simplicity elsewhere

7

Processor Clock Cycle

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

extend

new

pc

register
file

8

Processor Clock Cycle

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

extend

new

pc

register
file

9

Multi-Cycle Instructions

Strategy 2

• Multiple cycles to complete a single instruction

E.g: Assume:

• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Multi-Cycle CPU

30 MHz (33 ns cycle) with
– 3 cycles per load/store

– 2 cycles per arithmetic

– 1 cycle per branch

Faster than Single-Cycle CPU?

10 MHz (100 ns cycle) with

– 1 cycle per instruction

10

CPI

Instruction mix for some program P, assume:

• 25% load/store (3 cycles / instruction)

• 60% arithmetic (2 cycles / instruction)

• 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

3 * .25 + 2 * .60 + 1 * .15 = 2.1

average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz
Single-Cycle @ 10 MHz
Single-Cycle @ 15 MHz

800 MHz PIII “faster” than 1 GHz P4

11

Example

Goal:
Make P run 2x faster via faster arithmetic instructions

Instruction mix (for P):
• 25% load/store, CPI = 3

• 60% arithmetic, CPI = 2

• 15% branches, CPI = 1

12

Amdahl’s Law

Amdahl’s Law
Execution time after improvement =

Or:

Speedup is limited by popularity of improved feature

Corollary:

Make the common case fast

Caveat:

Law of diminishing returns

execution time affected by improvement

amount of improvement
+ execution time unaffected

