Performance

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H 1.4

Design Goals

What to look for in a computer system?
ﬂ_@,g (8 “"}C T\' V. * Correctness: negotiable?

*Cost

—purchase cost = f(silicon size = gate

‘:L'O € S count, economics)

—operating cost = f(energy, cooling)

—operating cost >= purchase cost
C_a pac. 3'-7 eaty ”‘j
a/ } F * Efficiency
—

—power = f(transistor usage, voltage, wire
size, clock rate, ...)

Cnel
> M@&mmmm

* Intel Core i7 Bloomfield: 130 Watts
:)V * AMD Turion: 35 Watts
bs * Intel Core 2 Solo: 5.5 Watts
* Performance

{; ? S * Other: availability, size, greenness,
features, ...
cheaq

Performance

How to measure performance?

GHz (billions of cycles per second)
Pj MIPS (millions of instructions per
second)

MFLOPS (millions of floating point

M F L Q (; operations per second)

benchmarks (SPEC, TPC, ...)

€ 2 o 3@;56/60\5(RS

Metrics
latency: how long to finish my
V\/L IQ«Q program
throughput: how much work
finished per unit time

How Fast?

Prog.
Mem Reg.

/

3
an .
> File |
/ 68/9/9 gates
PC ! ~ 3 gates
T \4 control
dJ 60/6/21 gates

Assumptions:
e alu: 32 bit ripple carry + some muxes
* next PC: 30 bit ripple carry
e control: minimized for delay
* program memory: 16 ns
* register file: 2 ns access
* ignore wires, register setup time

* transistors: 2 ns per gate All signals are stable

Better Still: 80 gates = 160 ns; 21 gates =42 ns
* next PC: cheapest adder faster than 21 gate delays after clock edge

Better: > ~ 6 MHz; ~ 24MHz;

e alu: 32 bit carry lookahead + some muxes

* next PC: 30 bit carry lookahead y

Note! 1 light ns=1ft |

32 Bit Adder Design
Ripple Carry

2-Way Carry-Skip
3-Way Carry-Skip
4-Way Carry-Skip

Space
= 300 gates
= 360 gates
= 500 gates
= 600 gates
= 550 gates

L d
L

R
L d

L d
L

R
L d

L d
L

Time
64 gate delays
35 gate delays
22 gate delays
18 gate delays
16 gate delays

Split Look-Ahead

= 800 gates

R
L d

10 gate delaié)

Full Look-Ahead

= 1200 gates

= 5 gate delays

Optimization: Summar Y

Critical Path
* Longest path from a register output to a register input

* Determines minimum cycle, maximum clock frequency

Strategy 1
e Optimize for delay on the critical path
* Optimize for size / power / simplicity elsewhere

Processor Clock Cycle

register
file

imm

co s

A

>

extend

memory

memory |

Processor Clock Cycle

memory

LJ oSt cage L\/J/[,H/L&/,_

\e?<29¥’ (45¢ ‘

Brandnf - yunps

Multi-Cycle Instructions

Strategy 2

* Multiple cycles to complete a single instruction

|1&
E.g: Assume: o (o7
* load/store: 100 ns ¢k >/ | 0O nS
* arithmetic: 50 ns N . & M
 branches: 33 ns 20 MIVE
Multi-Cycle CPU S0 M ﬁ%ster than Single-Cycle CPU?
30 MHz (33 ns cycle) with 10 MHz (100 ns cycle) with

— 3 cycles per load/store
— 2 cycles per arithmetic

— 1 cycle per instruction

— 1 cycle per branch

CPI

Instruction mix for some program P, assume:
oad/store cytles / instruction)
arithmeti 2 oycles / instruction)

anches \(1 cycle / instruction)

Multi-Cycle performance for program P:
3*25+2*60+1*.15=2.1 ~
average cycles per instruction (CPI)EA \ 5 M HZ

C — S

Multi-Cycle @ 30 MHz 9\ &'AN (‘9/ (7 1F

Single-Cycle @ TOMHz — | ¢ § | (o 1) 7/

(SinglgC/yae@15MHz =) =15 M FS

| 800 MHz Plll “faster” than 1 GHz P4 |

A

10

Example

Goal:
Make P run 2x faster via faster arithmetic instructions

!
Instruction mix (for P): (3

~
 25% load/store, CPI =// v 7}/ « TS @

* 60% arithmetic, CPI = /.2 _ =
* 15% branches, CPl= 15 - \e —
— J—

11

Amdahl’s Law

Amdahl’s Law
v
Execution time after improvement = SS 56 _
U575

@affected by improvement o
+ execution time unaffected

amount of improvement g

Or:

Speedup is limited byf improved feature

Corollary: Qov*‘/‘\?
Make the co Case fast > @xe&«. Tt
Caveat:

Law of diminishing returns

12

