State & Finite State Machines

Kevin Walsh CS 3410, Spring 2010

Computer Science Cornell University

See: P&H Appendix C.7. C.8, C.10, C.11

Prelim 1: 3/18/2010 (evening)

Prelim 2: 4/27/2010 (evening)

Stable and unstable equilibria?

So far:

 Current output depends only on current input (no internal state)

Need a way to record data

- ... a way to build stateful circuits
- ... a state-holding device

Set-Reset (SR) Latch

Stores a value Q and its complement Q

	S	Q-
_	R	\overline{Q}

S	R	Q	Q
0	0		
0	1		
1	0		
1	1		

Data (D) Latch

D	Q	Q
0		
1		

Level Sensitive D Latch
Clock high:
set/reset (according to D)
Clock low:

keep state (ignore D)

Clock helps coordinate state changes

- Usually generated by an oscillating crystal
- Fixed period; frequency = 1/period

Level sensitive

State changes when clock is high (or low)

Edge triggered

State changes at clock edge

Register

- D flip-flops in parallel
- shared clock
- extra clocked inputs: write_enable, reset, ...

Q: What happens if input is changes near clock edge?

A: Google "Buridan's Principle" by Leslie Lamport

Clock Methodology

Negative edge, synchronous

Signals must be stable near falling clock edge

- Positive edge synchronous
- Asynchronous, multiple clocks, . . .

Finite State Machine

- inputs from external world
- outputs to external world
- internal state
- combinational logic

Input: up or down

Output: on or off

States: A, B, C, or D

Input: **0**=up or **1**=down

Output: **1**=on or **1**=off

States: **00**=A, **01**=B, **10**=C, or **11**=D

General Case: Mealy Machine

Outputs and next state depend on both current state and input

Special Case: Moore Machine

Outputs depend only on current state

Input: up or down

Output: on or off

States: A, B, C, or D

Digital Door Lock

Inputs:

- keycodes from keypad
- clock

Outputs:

- "unlock" signal
- display how many keys pressed so far

Assumptions:

- signals are synchronized to clock
- Password is B-A-B

K	Α	В	Meaning		
0	0	0	Ø (no key)		
1	1	0	'A' pressed		
1	0	1	'B' pressed		

Assumptions:

High pulse on U unlocks door

S ₂	S ₁	S ₀	D_3	D_2	D_1	D_0	U
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	0	0	0	1	0
1	0	1	0	0	1	0	0

ſ	State	S ₂	S ₁	S ₀	h
3 L	Idle	0	0	0	
	G1	0	0	1	H
	G2	0	1	0	
	G3	0	1	1	
	B1	1	0	0	
	B2	1	0	1	

S_2	S_1	S ₀	K	Α	В	S' ₂	S' ₁	S' ₀
0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	1
0	0	0	1	1	0	0	0	1
0	0	1	0	0	0	0	0	1
0	0	1	1	1	0	0	1	0
0	0	1	0	0	1	0	1	0
0	1	0	0	0	0	0	1	0
0	1	0	0	0	1	0	1	1
0	1	0	0	1	0	0	0	0
0	1	1	Х	Х	х	0	0	0
1	0	0	0	0	0	1	0	0
1	0	0	1	х	Х	1	0	1
1	0	1	0	0	0	1	0	1
1	0	1	1	Х	Х	0	0	0

Strategy:

- (1) Draw a state diagram (e.g. Moore Machine)
- (2) Write output and next-state tables
- (3) Encode states, inputs, and outputs as bits
- (4) Determine logic equations for next state and outputs

We can now build interesting devices with sensors

Using combinational logic

We can also store data values

- Stateful circuit elements (D Flip Flops, Registers, ...)
- Clock to synchronize state changes
- But be wary of asynchronous (un-clocked) inputs
- State Machines or Ad-Hoc Circuits