State & Finite State Machines

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

See: P&H Appendix C.7. C.8, C.10, C.11

Prelim 1: 3/18/2010 (evening)
Prelim 2: 4/27/2010 (evening)

Unstable Devices

Stable and unstable equilibria?

Bistable Devices

So far:

e Current output depends only on current input
(no internal state)

|nputs I<Il > Combinational ’(

S > Outputs
circuilt M

Need a way to record data
e ... a way to build stateful circuits
... a state-holding device

SSSSSSS

Set-Reset (SR) Latch s
Stores a value Q and its complement Q

T

SIR] @Q | Q

= = | O | O
O |- O
Wn

A

Ol

Data (D) Latch

Q

Q

L OO

ccccccccccccccc

Level Sensitive D Latch
Clock high:

D -‘[HS Q set/reset (according to D)

. Clock low:
clk 1R Q keep state (ignore D)

CCCCCC

Clock helps coordinate state changes
e Usually generated by an oscillating crystal
* Fixed period; frequency = 1/period

Edge-Triggered D Flip-Flop

D Flip-Flop
Q - Edge-Triggered

— O
@
Tl

— O

Ol O

- Data is captured

Ol

CIk'T B ‘ when clock is high
- Outputs change only

on falling edges

10

Clock Disciplines

Level sensitive

e State changes when clock is high (or low)

Edge triggered

e State changes at clock edge

positive edge-triggered ‘ M
negative edge-triggered ‘

11

DO— —

Register

D flip-flops in parallel
- shared clock

- extra clocked inputs:
write_enable, reset, ...

4-bit
reg

Registers

12

1-bit
reg

Clk

Metastability and Asynchronous Inputs

13

Metastability and Asynchronous Inputs

Q: What happens if input is changes near clock edge?

A: Google “Buridan’s Principle” by Leslie Lamport

—>o—

1-bit
reg

+

Clk

14

Reset
Run

| 32-bit

reg

+1

Clk

An Example

15

Clock Methodology

Clock Methodology
- Negative edge, synchronous

— Signals must be stable near falling clock edge

- Positive edge synchronous
Asynchronous, multiple clocks, . ..

16

Voting Machine

w
N
\‘ P
w
N
\‘ P
w
N
'y &
$
L1
>\mux , \mux /(—
+
=
]

LED dec

32

\

reg
WH| WH| WE WE
D T A T A T A
\ decoder (3-to-8) /

detect

(GO RN

17

Automata Model

Finite State Machine

" Current Output
Q
S 3 State o[Co m.b.
i} Logic
Al Input—s Next State

* inputs from external world

e outputs to external world

internal state
 combinational logic

18

down/on
input/output up/off — down/on

"‘ o®,

Legend up/off up/off
up/off

CE_ @0

down/off

Input: up or down down/off
Output: on or off
States: A, B, C,or D

19

FSM Example Details

1/1

igiqiye:-/070,0,... 0/0 1/ 1
Legend O/O
@ @
1/0

Input: O=up or 1=down 1/0
Output: 1=on or 1=off
States: 00=A, 01=B, 10=C, or 11=D

20

Mealy Machine

General Case: Mealy Machine

., | Current
T Output
o 2 State S Com.b.
i} Logic
Al Input—s> Next State

Outputs and next state depend on both
current state and input

21

Special Case: Moore Machine

.~ | Current Comb.
I3 State Logic Output
> © ¢
if L7~ Comb
A | Input—>_ Logic Next State

Outputs depend only on current state

22

Moore Machine Example

down

input p a8 N ﬁ"“
Legend up -
up i D
down

Input: up or down down

Output: on or off
States: A, B, C,or D

23

Digital Door Lock

Digital Door Lock

Inputs:

- keycodes from keypad

- clock

Outputs:

- “unlock” signal

- display how many keys pressed so far

24

Door Lock: Inputs

Assumptions:
- signals are synchronized to clock

« Password is B-A-B

Meaning

@ (no key)
‘A’ pressed

R = O X

A
0
1
0

R IO O W

>R

‘B’ pressed

25

Door Lock: Outputs

Assumptions:
- High pulse on U unlocks door

LED
dec

S

26

Door Lock: Simplified State Diagram

o()

else else any

27

Door Lock: Simplified State Diagram

any

28

Door Lock: Simplified State Diagram

29

Door Lock: Simplified State Diagram

Next State
Idle
G1
Bl
G1
G2
B2
B2
G3

30

State Table Encoding

Strategy:

(1) Draw a state diagram (e.g. Moore Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs

32

Door Lock: Implementation

We can now build interesting devices with sensors
e Using combinational logic

We can also store data values

 Stateful circuit elements (D Flip Flops, Registers, ...)
* Clock to synchronize state changes

e But be wary of asynchronous (un-clocked) inputs
e State Machines or Ad-Hoc Circuits

33

