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Unstable Devices



Stable and unstable equilibria?

Bistable Devices



So far:

e Current output depends only on current input
(no internal state)
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Need a way to record data
e ... a way to build stateful circuits
... a state-holding device



SSSSSSS

Set-Reset (SR) Latch s
Stores a value Q and its complement Q
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Level Sensitive D Latch
Clock high:

D -‘[ HS Q set/reset (according to D)

. Clock low:
clk 1R Q keep state (ignore D)
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Clock helps coordinate state changes
e Usually generated by an oscillating crystal
* Fixed period; frequency = 1/period




Edge-Triggered D Flip-Flop

D Flip-Flop
Q - Edge-Triggered
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- Data is captured

Ol

CIk'T B ‘ when clock is high
- Outputs change only

on falling edges
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Clock Disciplines

Level sensitive

e State changes when clock is high (or low)

Edge triggered

e State changes at clock edge

positive edge-triggered ‘ M
negative edge-triggered ‘
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DO— —

Register

D flip-flops in parallel
- shared clock

- extra clocked inputs:
write_enable, reset, ...

4-bit
reg

Registers
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1-bit
reg

Clk

Metastability and Asynchronous Inputs
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Metastability and Asynchronous Inputs

Q: What happens if input is changes near clock edge?

A: Google “Buridan’s Principle” by Leslie Lamport
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Clk

14



Reset
Run

| 32-bit

reg

+1

Clk

An Example
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Clock Methodology

Clock Methodology
- Negative edge, synchronous

— Signals must be stable near falling clock edge

- Positive edge synchronous
Asynchronous, multiple clocks, . ..
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Voting Machine
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Automata Model

Finite State Machine

" Current Output
Q
S 3 State o[ Co m.b.
i} Logic
Al Input—s Next State

* inputs from external world

e outputs to external world

internal state
 combinational logic
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down/on
input/output up/off — down/on

"‘ o®,

Legend up/off up/off
up/off

CE_ @0

down/off

Input: up or down down/off
Output: on or off
States: A, B, C,or D
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FSM Example Details

1/1

igiqiye:-/070,0,... 0/0 1/ 1
Legend O/O
@ @
1/0

Input: O=up or 1=down 1/0
Output: 1=on or 1=off
States: 00=A, 01=B, 10=C, or 11=D
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Mealy Machine

General Case: Mealy Machine

., | Current
T Output
o 2 State S Com.b.
i} Logic
Al Input—s> Next State

Outputs and next state depend on both
current state and input
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Special Case: Moore Machine

.~ | Current Comb.
I3 State Logic Output
> © ¢
if L7~ Comb
A | Input—>\_ Logic Next State

Outputs depend only on current state
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Moore Machine Example

down

input p a8 N ﬁ"“
Legend up -
up i D
down

Input: up or down down

Output: on or off
States: A, B, C,or D
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Digital Door Lock

Digital Door Lock

Inputs:

- keycodes from keypad

- clock

Outputs:

- “unlock” signal

- display how many keys pressed so far
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Door Lock: Inputs

Assumptions:
- signals are synchronized to clock

« Password is B-A-B

Meaning

@ (no key)
‘A’ pressed

R = O X

A
0
1
0

R IO O W

>R

‘B’ pressed
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Door Lock: Outputs

Assumptions:
- High pulse on U unlocks door

LED
dec

S
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Door Lock: Simplified State Diagram

o( )

else else any
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Door Lock: Simplified State Diagram

any
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Door Lock: Simplified State Diagram
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Door Lock: Simplified State Diagram

Next State
Idle
G1
Bl
G1
G2
B2
B2
G3
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State Table Encoding




Strategy:

(1) Draw a state diagram (e.g. Moore Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs
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Door Lock: Implementation



We can now build interesting devices with sensors
e Using combinational logic

We can also store data values

 Stateful circuit elements (D Flip Flops, Registers, ...)
* Clock to synchronize state changes

e But be wary of asynchronous (un-clocked) inputs
e State Machines or Ad-Hoc Circuits
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