Arithmetic

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

- Adds two 4 -bit numbers, along with carry-in
- Computes 4-bit result and carry out

Addition with negatives:

- pos + pos \rightarrow add magnitudes, result positive
- neg + neg \rightarrow add magnitudes, result negative
- pos + neg \rightarrow subtract smaller magnitude, keep sign of bigger magnitude

First Attempt: Sign/Magnitude Representation

- 1 bit for sign (0=positive, $1=$ negative)
- N-1 bits for magnitude

Better: Two's Complement Representation

- Leading 1's for negative numbers
- To negate any number:
- complement all the bits
- then add 1

Non-negatives Negatives
(as usual):

$$
\begin{aligned}
& +0=0000 \\
& +1=0001 \\
& +2=0010 \\
& +3=0011 \\
& +4=0100 \\
& +5=0101 \\
& +6=0110 \\
& +7=0111 \\
& +8=1000
\end{aligned}
$$

(two's complement: flip then add 1):

$$
\begin{aligned}
\sim 0=1111 & -0=0000 \\
\sim 1=1110 & -1=1111 \\
\sim 2=1101 & -2=1110 \\
\sim 3=1100 & -3=1101 \\
\sim 4=1011 & -4=1100 \\
\sim 5=1010 & -5=1011 \\
\sim 3=1001 & -6=1010 \\
\sim 7=1000 & -7=1001 \\
\sim 8=0111 & -8=1000
\end{aligned}
$$

Signed two's complement

- Negative numbers have leading 1's
- zero is unique: +0 = - 0
- wraps from largest positive to largest negative

N bits can be used to represent

- unsigned:
- eg: 8 bits \Rightarrow
- signed (two's complement):
- ex: 8 bits \Rightarrow

Extending to larger size

Truncate to smaller size

Addition with two's complement signed numbers

- Perform addition as usual, regardless of sign (it just works)

How does that work?

-154
+283

Overflow

- adding a negative and a positive?
- adding two positives?
- adding two negatives?

Rule of thumb:

Overflow happened iff carry into msb != carry out of msb

Two's Complement Adder with overflow detection

Two's Complement Subtraction

Lazy approach
$A-B=A+(-B)=A+(\bar{B}+1)$

Q: What if (-B) overflows?

$0=$ add 1=sub

- Is this design fast enough?
- Can we generalize to 32 bits? 64 ? more?

Speed of a circuit is affected by the number of gates in series (on the critical path or the deepest level of logic)

Carry ripples from Isb to msb

- First full adder, 2 gate delay
- Second full adder, 2 gate delay
- ...

