
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Circuits & Numbers

See: P&H Chapter 2.4, 2.5, 3.2, C.5

2

Office Hours

HW1

CSUGLab

3

Logic Minimization

How to implement a desired function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

sum of products:
• OR of all minterms where out=1

corollary: any combinational circuit can be implemented in
two levels of logic (ignoring inverters)

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

4

Karnaugh Maps

How does one find the most efficient equation?

–Manipulate algebraically until…?

–Use Karnaugh maps (optimize visually)

–Use a software optimizer

For large circuits

–Decomposition & reuse of building blocks

5

Voting machine

• Voting Machine!
– optical scan (thanks FL)

• Assume:
– vote is recorded on paper

by filling a circle
– fixed number of choices
– don’t worry about “invalids”

Al Franken

Bill Clinton

Condi Rice

Dick Cheney

Eliot Spitzer

Fred Upton

Write-in

6

Voting Machine Components

Ballots

The 3410 optical scan

vote counter reader

machine

– Input: paper with at
exactly one mark

– Datapath: process
current ballot

– Output: a number the
supervisor can record

– Memory & control: none
for now

5 Essential Components?

7

Input

Photo-sensitive transistor
• photons replenish gate

depletion region
• can distinguish dark and light

spots on paper

• Use array of N sensors for
voting machine input

i0
i1
i2
i3

i5
i4

i6

Vdd

8

Output

7-Segment LED

• photons emitted when
electrons fall into holes

d7 d6 d5 d4

d3 d2 d1 d0

9

Block Diagram

d
et

ec
t

8N

10

Encoders

N might be large
• Routing wires is expensive

More efficient encoding?
1

2

3

4

5

6

7

0

en
co

d
er

N
. . .

. . .

11

Number Representations

• Base 10 - Decimal

• Just as easily use other bases
– Base 2 - Binary
– Base 8 - Octal
– Base 16 - Hexadecimal

6 3 7
102 101 100

12

Counting

Counting

13

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

14

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

15

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

16

Hexadecimal, Binary, Octal Conversions

17

Encoder Implementation

Implementation . . .
– assume 8 choices, exactly one mark detected

i0
i1

b0

1

i2
i3

2

3

4 b1

3-bit encoder

(8-to-3)

b2

i4
5i5

i6
i7

6

7

0
en

co
d

er

18

Ballot Reading

d
et

ec
t

enc
8 3 8

19

7-Segment LED Decoder

3 inputs

• encode 0 – 7 in
binary

7 outputs

• one for each LED

7
LE

D
 d

ec
o

d
e

20

7 Segment LED Decoder Implementation

d0
d1

d2

d3
d4

d5
d6

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 1 1 0 1 1 1

1 0 0 0 0 0 1

0 1 1 1 0 1 1

1 1 0 1 0 1 1

1 0 0 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 1 1 0

1 0 0 0 0 1 1

21

Ballot Reading and Display

Ballots
The 3410 optical scan

vote counter reader

machine

d
et

ec
t

enc
8 3 7

7LED

decode

22

Building Blocks

binary
encoder

2N

N binary
decoder

N

2N

M
u

lt
ip

le
xo

r

N

M

N

N

N

N

. .
 .

0

1

2

2M-1

23

Binary Addition

Addition works the same way
regardless of base

• Add the digits in each position

• Propagate the carry

183
+ 254

001110

+ 011100

24

1-bit Adder

Half Adder

• Adds two 1-bit numbers

• Computes 1-bit result
and 1-bit carry

A B

R

C

25

1-bit Adder with Carry

Full Adder

• Adds three 1-bit numbers

• Computes 1-bit result
and 1-bit carry

• Can be cascaded

A B

R

Cout Cin

26

4-bit Adder

4-Bit Full Adder

• Adds two 4-bit numbers
and carry in

• Computes 4-bit result
and carry out

• Can be cascaded

A[4] B[4]

R[4]

Cout Cin

27

4-bit Adder

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout Cin

28

Summary

We can now implement any combinational
(combinatorial) logic circuit

• Decompose large circuit into manageable blocks

– Encoders, Decoders, Multiplexors, Adders, ...

• Design each block

– Binary encoded numbers for compactness

• Can implement circuits using NAND or NOR gates

• Can implement gates using use P- and N-transistors

