CS 3410
Computer System Organization and Programming
K. Walsh
kwalsh@cs

TAs:
Deniz Altinbuken
Hussam Abu-Libdeh

Consultants:
Adam Sorrin
Arseney Romanenko

If you want to make an apple pie from scratch, you must first create the universe.

— Carl Sagan
C

```c
int x = 10;
x = 2 * x + 15;
```

MIPS assembly language

```
addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15
```

MIPS machine language

```
001000000000001010000000000000001010
000000000000010010010100001000000
0010000010100101000000000000001111
```
int sum3(int v[]) {
 return v[0] +
 v[1] +
 v[2];
}

main() {
 ...
 int v[] = ...;
 int a = sum3(v);
 v[3] = a;
 ...
}
MIPS assembly language

sum3:
lw r9, 0(r5)
lw r10, 4(r5)
lw r11, 8(r5)
add r3, r9, r10
add r3, r3, r11
jr r31

main:
...
addi r5, r0, 1000
jal sum3
sw r3, 12(r5)
...

MIPS machine language

10001100101010010000000000000000000
1000110010101010100000000000000100
1000110010101010110000000000000100
00000010010101010000110000010000
000000000110101011000110000010000
0000001111100000000000000000100
...
...
...
001000000000001010000000111101000
000011000001000000000000000000000
101011001010001100000000000001100
...

Computer System = ?
Input +
Output +
Memory +
Datapath +
Control

Registers
CPU

Video
Network
USB
Keyboard
Mouse

bus
bus

Memory
Disk
Audio
Serial
r0 : 0
r5 :

1. Fetch
2. Decode
3. Execute

Control Unit

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15
lw r9, 0(r5)
lw r10, 4(r5)
add r3, r9, r10
sw r3, 12(r5)
Machine language represents program as numbers
 • Store in / fetch from memory like other data
 • 2 new registers:
 • Program counter (PC): address of next instruction
 • Instruction register (IR): current instruction

Revolutionary idea: a program is *just data*
 → von Neumann Architecture

Alternative:
 • Separate memory systems for code and data
 → Harvard Architecture
1. Fetch @ PC
2. Update PC
3. Decode IR
4. Execute

Control Unit

Function Unit

CPU

IR:

PC:

MDR:

MAR:

0:

4:

8:

12:

16:

20:

24:

28:

32:

... 32:

... 1000:

1004:

1008:

1012:

... memory

Now With Control
MIPS R3000 ISA (Instruction Set Architecture)
Interface between hardware and software
• memory: load, store, ...
• computational: add, sub, mul, ...
• control: jump, branch, ...
• floating point, cpu and memory management, ...

Instruction Formats

<table>
<thead>
<tr>
<th>OP</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>sa</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP</td>
<td>rs</td>
<td>rd</td>
<td></td>
<td></td>
<td>immediate</td>
</tr>
<tr>
<td>OP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>address</td>
</tr>
</tbody>
</table>

10001000101010100000000000000100
lw r10, 4(r5)

Registers

RO - R31
PC
HI
LO
A Simple Calculator
1-bit Multiplexor
Computation
E.g. Multiplexor

State
E.g. Register

Gates
E.g. AND

Transistors
Why?
void A() {
 for (int i = 0; i < 4096; i++)
 for (int j = 0; j < 4096; j++)
 v[i][j] = f(v[i][j], i, j);
}

0.45 sec, (0.12 sec optimized)

void B() {
 for (int j = 0; j < 4096; j++)
 for (int i = 0; i < 4096; i++)
 v[i][j] = f(v[i][j], i, j);
 4.05 sec (3.52 sec optimized)
The number of transistors integrated on a single die will double every 24 months...

– Gordon Moore, Intel co-founder, 1965

1971 – 2300 transistors – 1MHz – 4004
1990 – 1M transistors – 50MHz – i486
2001 – 42M transistors – 2GHz – Xeon
2004 – 55M transistors – 3GHz – P4
2007 – 290M transistors – 3GHz – Core 2 Duo
2009 – 731M transistors – 2GHz – Nehalem
Xilinx FPGA

NVidia GPU

Cell Phones

PCs

TVs

Berkeley mote
Why?

- Basic knowledge needed for *all* other areas of CS: operating systems, compilers, ...
- Levels are not independent
 hardware design ↔ software design ↔ performance
- Crossing boundaries is hard but important
 device drivers
- Good design techniques
 abstraction, layering, pipelining, parallel vs. serial, ...
- Understand where the world is going
http://www.cs.cornell.edu/courses/cs3410

- Office Hours / Consulting Hours
- Lecture slides & schedule
- Logisim
- CSUG lab access (esp. second half of course)

Sections (choose one):

- T 2:55 – 4:10pm Hollister 110
- W 3:35 – 4:50pm Hollister 320
- R 11:40 – 12:55pm Hollister 401
- R 2:55 – 4:10pm Hollister 401
- F 2:55 – 4:10pm Snee 1150

- Will cover new material
- This week: intro to logisim
A) Love it
B) Okay
C) What?
D) Whatever
E) Please don’t
Grading:

- 4 Programming Assignments (35 – 45%)
 - Work in groups of two
- 2 Prelims (30 – 40%)
- 4-5 Homework Assignments (20 – 25%)
 - Work alone
- Discretionary (5%)
Academic Integrity:

- All submitted work must be your own (or your groups)
 - OK to study together, but do not share solutions
- Cite your sources

Stressed? Tempted? Lost?

- Come see me before due date!

Plagiarism in any form will not be tolerated