
What’s in a device driver?

Role of the OS

• Protect data and resources (file permissions,
etc.)

• Provide isolation (virtual memory, etc.)

• Abstract away details of hardware
– Processes use “stdin”, not keyboard I/O ports

– Processes use open/read/write/close, not disk
seeks

• Multiplex hardware resources
– Processes think they own CPU, kbd, network, etc.

Structure of the OS

• Lots of (mostly) hardware and device-independent
code
– File systems, scheduler algorithms, sockets and networking

code, etc.

• Small bits of device-dependent code
– driver for every specific model of…

• network card
• audio card
• graphics card
• usb device
• …

– each set of similar drivers provides uniform API to rest of
OS

Example: Unix Network Drivers

All network drivers implement

• probe(…) – check if this device exists

• configure(…) – turn device on/off, etc.

• send_pkt(pkt) – send packet out to network

All network drivers invoke

• recv_pkt(pkt) – when packet arrives

• alloc_dma() – when they need dma’able pages

Driver-to-Device Interaction

• Driver needs to
– configure the device, turn it on/off, etc.
– tell device when to send a packet

• tell it when and where to go in memory to get packet data
(via DMA from mem to device)

• Device needs to
– tell device when a packet has arrived (e.g. via

interrupts)

• Driver also needs to
– tell device where to put incoming packets in memory

(via DMA from device to mem)

Example: Broadcom tg3 network card
and a driver for it from Linux

• A few years old, but very typical of many cards

• Uses DMA for ingoing and outgoing packets

• Uses interrupts to notify of packet arrival

• Uses Memory mapped I/O for configuring
device, checking status, etc.

Sending a packet

• Driver implementation for send_pkt(pkt_ptr)

packet is already on
one dma’able page

dev->dma_base = v_to_p(pkt_ptr)

dev->dma_len = pktlen

dev->cmd = SEND|DMA_ENABLE

But…

Previous would be slow

• driver needs to talk to card for every send
(3 times: base, len, cmd)

• probably would have to wait for current DMA
to finish before setting up next one
(can’t overwrite dma_base while it is being
used!)

What really happens

Device and driver share a list of packets to send

– list is stored in memory

– driver accesses using regular inst. / code

– device accesses using DMA

Driver adds dma’able pages to the list

Device removes them after they are sent

Actually… a fixed size circular list

struct ring_elt { int phys_addr; int len }
struct ring {
// all indexes are modulo 128
int head; // index of most recently added pkt
int tail; // index of of most recently sent pkt
ring_elt entries[128];

}
driver only modifies free entries and head
device only modifies tail

Sending a packet

configure() { …
ring = alloc_dma(sizeof(struct ring));
dev->ring = v_to_p(ring)

}
send_pkt() {
while (ring is full)

wait();
add v_to_p(pkt) to ring;
increment head;

}

Receiving a packet?

• Same idea, but in reverse
configure() { …

rx_ring = alloc_dma(sizeof(struct ring));
tx_ring = alloc_dma(sizeof(struct ring));
dev->rx_ring = v_to_p(rx_ring)

dev->tx_ring = v_to_p(tx_ring)
}
net_interrupt_handler() {
while (rx_ring is not empty) {
get pkt off of ring
increment tail

recv_pkt(pkt)
}

}

What does OS do?

• figure out what to do with arriving packet,
then invoke corresponding function

– (e.g. a firewall, a router, an application, …)

• or buffer received packets in a list until some
other code claims them

Loose Ends: Flow control

• What if sending packets too quickly?

– driver send_pkt() will wait until it can send it

• What if packets arriving too quickly?

– device will DROP packets if ring is full

– driver needs to get packets off the ring quick!

– no time for much computation (esp. with bursty
traffic) – just add received packets to a list and
deal with them later

Loose Ends: Concurrency

• What if packets arrive while we are already
processing a packet arrival interrupt?

– Turn off interrupts for entirety of
packet_arrival_interrupt_handler()

Loose Ends: Concurrency 2

• What if packets arrive while kernel is doing
other stuff?

– if interrupt handler and “other stuff” don’t touch
any of the same variables, data, etc.

– …then no problem

Loose Ends: Concurrency 3

• What if packets arrive while kernel is doing other stuff?
– if interrupt handler and “other stuff” do touch some of the

same variables, data, etc.

e.g. kernel is looking at the recent arrivals list

– … then we need to be careful about concurrency

• e.g. other code can disable interrupts while it looks at
the recent arrivals list

• Can’t mutex / spinlock: why?
– A: because if it is locked by other code when interrupt

happens, driver will spin forever waiting to get into the
critical section

