Section: Mass Storage Tapes, Disks, CDs, DVDs, RAID etc.

Deniz Altinbuken

CS 3410, Spring 2010

Computer Science

Cornell University

adapted from slides of Kevin Walsh and Emin Gun Sirer

Challenge

- How do we store lots of data for a long time
 - Disk (Hard disk, floppy disk, ...)
 - Tape (cassettes, backup, VHS, ...)
 - CDs/DVDs

I/O System Characteristics

- Dependability is important
 - Particularly for storage devices
- Performance measures
 - Latency (response time)
 - Throughput (bandwidth)
 - Desktops & embedded systems
 - Mainly interested in response time & diversity of devices
 - Servers
 - Mainly interested in throughput & expandability of devices

Memory Hierarchy

Tapes

- Same basic principle for 8-tracks, cassettes, VHS, ...
 - Ferric Oxide Powder: ferromagnetic material
 - During recording, the audio signal is sent through the coil of wire to create a magnetic field in the core.
 - During playback, the motion of the tape creates a varying magnetic field in the core and therefore a signal in the coil.

Disks & CDs

- Disks use same magnetic medium as tapes
 - concentric rings (not a spiral)

CDs & DVDs use optics and a single spiral track

Disk Physics

Typical parameters:

- 1 spindle
- 1 arm assembly
- 1-4 platters
- 1-2 sides/platter
- 1 head per side (but only 1 active head at a time)
- 700-20480 tracks/surface
- 16-1600 sectors/track

Disk Accesses

- Accessing a disk requires:
 - specify sector: C (cylinder), H (head), and S (sector)
 - specify size: number of sectors to read or write
 - specify memory address

• Performance:

- seek time: move the arm assembly to track
- Rotational delay: wait for sector to come around
- transfer time: get the bits off the disk
- Controller time: time for setup

Example

- Average time to read/write 512-byte sector
 - Disk rotation at 10,000 RPM
 - Seek time: 6ms
 - Transfer rate: 50 MB/sec
 - Controller overhead: 0.2 ms
- Average time:
 - Seek time + rotational delay + transfer time + controller overhead
 - 6ms + 0.5 rotation/(10,000 RPM) + 0.5KB/(50 MB/sec) + 0.2ms
 - 6.0 + 3.0 + 0.01 + 0.2 = 9.2ms

Disk Access Example

- If actual average seek time is 2ms
 - Average read time = 5.2ms

Disk Scheduling

- Goal: minimize seek time
 - secondary goal: minimize rotational latency
- FCFS (First come first served)
- Shortest seek time
- SCAN/Elevator
 - First service all requests in one direction
 - Then reverse and serve in opposite direction
- Circular SCAN
 - Go off the edge and come to the beginning and start all over again

FCFS

SSTF

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

SCAN

C-SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

Disk Geometry: LBA

- New machines use logical block addressing instead of CHS
 - machine presents illusion of an array of blocks, numbered 0 to N
- Modern disks...
 - have varying number of sectors per track
 - roughly constant data density over disk
 - varying throughput over disk
 - remap and reorder blocks (to avoid defects)
 - completely obscure their actual physical geometry
 - have built-in caches to hide latencies when possible (but being careful of persistence requirements)
 - have internal software running on an embedded CPU

Flash Storage

- Nonvolatile semiconductor storage
 - 100× 1000× faster than disk
 - Smaller, lower power
 - But more \$/GB (between disk and DRAM)

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
- Flash has unusual interface
 - can only "reset" bits in large blocks

I/O vs. CPU Performance

- Amdahl's Law
 - Don't neglect I/O performance as parallelism increases compute performance
- Example
 - Benchmark takes 90s CPU time, 10s I/O time
 - Double the number of CPUs/2 years
 - I/O unchanged

Year	CPU time	I/O time	Elapsed time	% I/O time
now	90s	10s	100s	10%
+2	45s	10s	55s	18%
+4	23s	10s	33s	31%
+6	11s	10s	21s	47%

RAID

- Redundant Arrays of Inexpensive Disks
- Big idea:
 - Parallelism to gain performance
 - Redundancy to gain reliability

Raid 0

- Striping
 - Non-redundant disk array!

Raid 1

- Mirrored Disks!
 - More expensive
 - On failure use the extra copy

Raid 2-3-4-5-6

- Bit Level Striping and Parity Checks!
 - As level increases:
 - More guarantee against failure, more reliability
 - Better read/write performance

Summary

- Disks provide nonvolatile memory
- I/O performance measures
 - Throughput, response time
 - Dependability and cost very important
- RAID
 - Redundancy for fault tolerance and speed