Challenge

- How do we store lots of data for a long time
 - Disk (Hard disk, floppy disk, ...)
 - Tape (cassettes, backup, VHS, ...)
 - CDs/DVDs
I/O System Characteristics

• Dependability is important
 – Particularly for storage devices

• Performance measures
 – Latency (response time)
 – Throughput (bandwidth)
 – Desktops & embedded systems
 ▪ Mainly interested in response time & diversity of devices
 – Servers
 ▪ Mainly interested in throughput & expandability of devices
Memory Hierarchy

- **16 KB registers/L1**: 2 ns, random access
- **512 KB L2**: 5 ns, random access
- **2 GB DRAM**: 20-80 ns, random access
- **300 GB Disk**: 2-8 ms, random access
- **1 TB Tape**: 100s, sequential access
Tapes

• Same basic principle for 8-tracks, cassettes, VHS, ...
 • Ferric Oxide Powder: ferromagnetic material
 • During recording, the audio signal is sent through the coil of wire to create a magnetic field in the core.
 • During playback, the motion of the tape creates a varying magnetic field in the core and therefore a signal in the coil.
Disks & CDs

• Disks use same magnetic medium as tapes
 • concentric rings (not a spiral)

• CDs & DVDs use optics and a single spiral track
Typical parameters:

- 1 spindle
- 1 arm assembly
- 1-4 platters
- 1-2 sides/platter
- 1 head per side (but only 1 active head at a time)
- 700-20480 tracks/surface
- 16-1600 sectors/track
Disk Accesses

• Accessing a disk requires:
 • specify sector: C (cylinder), H (head), and S (sector)
 • specify size: number of sectors to read or write
 • specify memory address

• Performance:
 • seek time: move the arm assembly to track
 • Rotational delay: wait for sector to come around
 • transfer time: get the bits off the disk
 • Controller time: time for setup
Example

• Average time to read/write 512-byte sector
 • Disk rotation at 10,000 RPM
 • Seek time: 6ms
 • Transfer rate: 50 MB/sec
 • Controller overhead: 0.2 ms

• Average time:
 • Seek time + rotational delay + transfer time + controller overhead
 \[6.0 + \frac{0.5 \text{ rotation}}{10,000 \text{ RPM}} + \frac{0.5 \text{KB}}{50 \text{ MB/sec}} + 0.2 \text{ms} \]
 \[6.0 + 3.0 + 0.01 + 0.2 = 9.2 \text{ms} \]
Disk Access Example

• If actual average seek time is 2ms
 • Average read time = 5.2ms
Disk Scheduling

- **Goal**: minimize seek time
 - secondary goal: minimize rotational latency
- **FCFS (First come first served)**
- **Shortest seek time**
- **SCAN/Elevator**
 - First service all requests in one direction
 - Then reverse and serve in opposite direction
- **Circular SCAN**
 - Go off the edge and come to the beginning and start all over again
FCFS

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
C-SCAN

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Disk Geometry: LBA

- New machines use *logical block addressing* instead of CHS
 - machine presents illusion of an array of blocks, numbered 0 to N
- Modern disks...
 - have varying number of sectors per track
 - roughly constant data density over disk
 - varying throughput over disk
 - remap and reorder blocks (to avoid defects)
 - completely obscure their actual physical geometry
 - have built-in caches to hide latencies when possible
 (but being careful of persistence requirements)
 - have internal software running on an embedded CPU
Flash Storage

- Nonvolatile semiconductor storage
 - 100× – 1000× faster than disk
 - Smaller, lower power
 - But more $/GB (between disk and DRAM)
Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, …
- Flash bits wears out after 1000’s of accesses
 - Not suitable for direct RAM or disk replacement
- Flash has unusual interface
 - can only “reset” bits in large blocks
I/O vs. CPU Performance

• Amdahl’s Law
 – Don’t neglect I/O performance as parallelism increases compute performance

• Example
 – Benchmark takes 90s CPU time, 10s I/O time
 – Double the number of CPUs/2 years
 ▪ I/O unchanged

<table>
<thead>
<tr>
<th>Year</th>
<th>CPU time</th>
<th>I/O time</th>
<th>Elapsed time</th>
<th>% I/O time</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>90s</td>
<td>10s</td>
<td>100s</td>
<td>10%</td>
</tr>
<tr>
<td>+2</td>
<td>45s</td>
<td>10s</td>
<td>55s</td>
<td>18%</td>
</tr>
<tr>
<td>+4</td>
<td>23s</td>
<td>10s</td>
<td>33s</td>
<td>31%</td>
</tr>
<tr>
<td>+6</td>
<td>11s</td>
<td>10s</td>
<td>21s</td>
<td>47%</td>
</tr>
</tbody>
</table>
RAID

• Redundant Arrays of Inexpensive Disks
• Big idea:
 • Parallelism to gain performance
 • Redundancy to gain reliability
Raid 0

• Striping
 • Non-redundant disk array!
Raid 1

- Mirrored Disks!
- More expensive
- On failure use the extra copy
Raid 2-3-4-5-6

- Bit Level Striping and Parity Checks!
- As level increases:
 - More guarantee against failure, more reliability
 - Better read/write performance
Summary

• Disks provide nonvolatile memory
• I/O performance measures
 • Throughput, response time
 • Dependability and cost very important
• RAID
 • Redundancy for fault tolerance and speed