
Intro to C

CS 3410

(Adapted from slides by Kevin Walsh

(Adapted from cs414 slides by Niranjan Nagarajan
(Adapted from slides by Alin Dobra

(Adapted from slides by Indranil Gupta))))

Why use C instead of Java

• Intermediate-level language:

– Low-level features like raw memory tweaking

– High-level features like complex data-structures

• Access to all the details of the implementation

– Explicit memory management

– Explicit error detection

• More power than Java (so may be made faster)

• All this make C a far better choice for system

programming.

Common Syntax with Java

• Basic types are similar (int, short,
double…)

• Operators:
– Arithmetic:

+ - * / %

++ -- *= += ...

– Relational: <,>,<=,>=,==,!=

– Logical: &&, ||, !, ? :

– Bit: &,|,^,!,<<,>>

Common Syntax with Java

(cont.)
• Language constructs:

if() {...} else {...}

while() {...}

do {...} while();

for (i=0; i<100; i++) {...}

switch() { case 0: ... break; ... }

break, continue, return

• No exception handling statements

 most functions return errors as special values
(e.g., a negative number). Check for these!

Hello World Example

/* Hello World program */

#include <stdio.h>

#include <stdlib.h>

int main(int ac, char **av) {

printf("Hello World.");

}

$./hello

Hello World.

hello.c

bash or

cmd.exe

Primitive Types

• Integer types:

– char : used to represent ASCII characters or one byte of data

(not 16 bit like in Java)

– int, short and long : versions of integer (architecture

dependent, usually 4, 2, and 4 bytes)

– signed char/short/int/long

– unsigned char/short/int/long

 conversion between signed/unsigned often does unexpected

things

• Floating point types: float and double like in Java.

• No boolean type, int usually used instead.

– 0 == false

– everything else == true

Primitive Types Examples

char c='A';

char c=65;

int i=-2343234;

unsigned int ui=100000000;

float pi=3.14;

double long_pi=0.31415e+1;

Arrays and Strings

• Arrays:
int A[10]; // declare and allocate space for array

for (int i=0; i<10; i++) // initialize the elements

A[i]=0;

• Strings: arrays of char terminated by ‘\0’ char

char name[] ="CS316"; //{'C','S',‘3','1',‘6','\0'}

name[2] = '3';

name[4]++;

– Strings are mutable

– Common functions strcpy, strcmp, strcat, strstr, strchr,
strdup.

– Use #include <string.h>

Pointers

• An 'address' is an index to a memory location (where some variable

is stored).

• A 'pointer' is a variable containing an address to data of a certain

type.

Declaring pointer variables:

int i;

int* p; // p points to some random location – null pointer

Creating and using pointer values

p = &i; // p points to integer i – p stores the address of i

(*p) = 3; // variable pointed by p takes value 3

• & is the address-of operator, * is the dereference operator.

• Similar to references in Java.

• Pointers are nearly identical to arrays in C
– array variables can not be changed (only the contents can change)

1054

6346

's'

Memory
addresses

0000

0004

0008

…

1054

…

1820

1824

1828

…

6344

6348

…

variable names

i

name

c

A

p

ps

int i = 6;

...

char name[] = "cs316";

...

char c = name[1];

...

short A[6];

for (i = 0; i < 6; i++)

A[i] = i*i;

int *p;

p = &i;

short *ps;

ps = &A[1];

6

0
4

's''c' '1''3'
\0'6'

1
9

16 25

Pointers (cont.)

Attention: dereferencing an uninitialized pointer can

have arbitrary effects (bad!) (including program crash).

Dereferencing a NULL pointer will crash the program

(better!)

• Advice:

– initialize with NULL, or some other value

– if not sure of value, check it before dereferencing

if (p == NULL) {

printf("ack! where's my pointer!\n"); exit(1);

}

Structures

• Like Java classes, but only member variables

– no static variables

– no functions

struct birthday {

char* name;

char month;

short day;

int year;

};

struct birthday mybirthday = {"elliot",8,21,2002};

mybirthday.name[0] = 'E';

if (mybirthday.month == 6)

printf("%s is a Cancer\n", mybirthday.name);

2002

8 21

0xdeadbeef
mybirthday

Structures (cont.)

• Members of a struct can be of any type that is already
defined.

• Trick: 'struct X' can contain a pointer to 'struct X'
struct intlist {

int data;

struct intlist* next;

};

• -> is syntax sugaring for dereference and take element:

struct intlist one = {10, NULL};

struct intlist two = {20, NULL};

struct intlist *head = &one;

one->next = &two;

(*one).next = &two; // Does same thing as previous line

printf function

• printf(formating_string, param1, ...)

• Formating string: text to be displayed containing special markers

where values of parameters will be filled:

– %d for int

– %c for char

– %f for float

– %g for double

– %s for null-terminated strings

• Example:

int numstudents = 39;

printf("The number of students in %s is %d.", name,

numstudents);

 printf will not complain about wrong types, number of params, etc.

enum: enumerated data-types

enum months {

JANUARY,

FEBRUARY,

MARCH,

...

};

• Each element of enum gets an integer value and can be used as an

integer.

enum signs {

CANCER = 6,

ARIES = 1,

...

};

Memory Allocation and Deallocation

• Global variables: declared outside any

function.

• Space allocated statically before program

execution.

• Initialization statements (if any) done before

main() starts.

• Space is deallocated when program finishes.

• Name has to be unique for the whole program.

Memory Allocation and Deallocation

• Local variables: declared in the body of a

function or inside a '{ }' block.

• Space allocated when entering the

function/block.

• Initialization (if any) before function/block starts.

• Space automatically deallocated when function

returns or when block finishes

 Attention: referring to a local variable (by means of a

pointer for example) after the function returned will

cause unexpected behavior.

• Names are visible only within the function/block

Memory Allocation and Deallocation

• Heap variables: memory has to be explicitly

– allocated: void* malloc(int) (similar to new in Java)

char *message = (char *)malloc(100);

intlist *mylist = (intlist *)malloc(sizeof(intlist));

mylist->data = 1;

mylist->next = (intlist *)malloc(sizeof(intlist));

mylist->next->data = 2;

mylist->next->next = NULL;

– deallocated: void free(void*)
free(msg); msg = NULL;

free(mylist->next);

free(mylist);

mylist = NULL;

Malloc/Free and pointers

You must malloc()

reading/writing from random addresses is bad.

You must malloc() the right amount:

reading/writing over the end of the space is bad
sizeof(struct birthday)
strlen(name)+1; // +1 is for the '\0'

You must free()
No garbage collector; if you don't have a free() for every
malloc(), you will eventually run out of memory.

… but not too much
Freeing same memory twice is bad ("double free").

…and don't use the memory after it is freed

set pointers to NULL after free.

Memory Allocation and Deallocation

struct birthday *clone_student(struct birthday *b) {

struct birthday *b2 = (struct birthday *)malloc(sizeof(struct birthday));

b2->name = (char *)malloc(strlen(b->name)+1); // or use strdup()

memcpy(b2->name, b->name, strlen(b->name)+1);

b2->day = b->day;

b2->year = b->year;

b2->month = b->month;

return b2;

}

void rename(struct birthday *b, char *new_name) {

free(b->name); // danger: b->name must be a heap variable

b->name = strdup(new_name); // same as malloc(...) then memcpy(...)

}

Functions

• Can declare using a prototype, then

define the body of the function later

– lets function be used before it is defined.

• Arguments passed by value

– Use pointers to pass by reference

• Return value passed by value

– Use malloc()'ed pointer to return by reference

Functions ­ Basic Example
#include <stdio.h>

int sum(int a, int b); // function declaration or

prototype

int main(int ac, char **av){

int total = sum(2+2,5); // call function sum with

parameters 4 and 5

printf("The total is %d\n", total);

}

/* definition of sum; has to match prototype */

int sum(int a, int b) {// arguments passed by value

return (a+b); // return by value

}

Why pass via pointers?

void swap(int, int);

int main(int ac, char **av) {

int five = 5, ten = 10;

swap(five, ten);

printf("five = %d and ten = %d", five, ten);

}

void swap(int n1, int n2) /* pass by value */

int temp = n1;

n1 = n2;

n2 = temp;

}

$./swaptest

five = 5 and ten = 10 NOTHING HAPPENED

Why pass by reference?(cont.)

void swap(int *, int *);

int main(int ac, char **av) {

int five = 5, ten = 10;

swap(&five, &ten);

printf("five = %d and ten = %d", five, ten);

}

void swap(int *p1, int *p2) /* pass by value */

int temp = *p1;

*p1 = *p2;

*p2 = temp;

}

$./swaptest

five = 10 and ten = 5

