Fast Adders

Goals:

serial to parallel conversion time vs. space tradeoffs design choices

Carry ripples from Isb to msb

- First full adder, 2 gate delay
- Second full adder, 2 gate delay
- ...

Every bit needs to wait for carry in.

Q: Can we compute Cin earlier?

A: carry look-ahead adder (CLA)

For each bit, analyze situation independent of Cin

- Just based on (A,B) only

Q: When is Cout $==1$, irrespective of Cin?
A: When $\mathrm{A}==1$ and $\mathrm{B}=1$
(this bit generates a carry, irrespective of Cin)

Q : When else might Cout $==1$?
A: When $A==1$ or $B==1$, and $\mathrm{Cin}==1$
(this bit propagates carry from Cin to Cout)

Invent two new terms: propagator, generator

- $g==1$ means this bit generates carry, irrespective of Cin

$$
-\mathrm{g}=\mathrm{AB}
$$

- $p==1$ means this bit propagates Cin to Cout, but doesn't generate carry
- $\mathrm{p}=\mathrm{A}$ xor B

Performance?

- p and g generated in 1 gate delay after A and B arrive
- R is 2 gate delay after Cin arrives

CLL inputs: pg from all 4 bits, C_{0}
CLL outputs: all carry bits (using just 2 gate delays)
$C_{1}=g_{0}+p_{0} C_{0}$
$C_{2}=g_{1}+p_{1} C_{1}=g_{1}+p_{1}\left(g_{0}+p_{0} C_{0}\right)=g_{1}+p_{1} g_{0}+p_{1} p_{0} C_{0}$
$C_{3}=g_{2}+p_{2} C_{2}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} C_{0}$
$C_{4}=g_{3}+p_{3} C_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} C_{0}$

4 Bit Ripple

$$
4 \times 9=36 \text { gates (4 input) }
$$

$$
4 \times 2=8 \text { gate delays }
$$

16 Bit Ripple $16 \times 9=144$ gates (4 input) 16×2 = 32 gate delays
16 Bit Look-Ahead $16 \times 11+152=328$ gates (17 input) 5 gate delays
64 Bit Ripple $64 \times 9=576$ gates (4 input) 64×2 = 128 gate delays
64 Bit Look-Ahead $64 \times 11+2144=2848$ gates (65 input)

Only compute some fast carry signals

Carry-Skip Adder

Only compute some fast carry signals

Time: ~ $2 x$ faster than ripple
Space: $\mathrm{O}(\mathrm{N})$ extra gates, $\mathrm{O}(\mathrm{N})$ gate inputs

Hybrid Approach

Carry ripples from Isb to msb

Hierarchical Approach

