
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Prelim Review



2

FAQ

FAQ

• caller/callee saved registers

• CPI

• writing assembling

• reading assembly



3

Caller-saved vs. Callee-saved

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Caller-save registers are responsibility of the caller
• Caller-save register values saved only if used after call/return
• The callee function can use caller-saved registers with concern

Callee-save register are the responsibility of the callee
• Values must be saved by callee before they can be used 
• Caller can assume that these registers will be restored



4

Caller-saved vs. Callee-saved

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

eax, ecx, and edx are caller-save…
• …  a function can freely modify these registers
• … but must assume that their contents have been destroyed if it in 

turns calls a function. 

ebx, esi, edi, ebp, esp are callee-save
• A function may call another function and know that the callee-save 

registers have not been modified
• However, if it modifies these registers itself, it must restore them to 

their original values before returning.



5

Caller-saved vs. Callee-saved

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

A caller-save register must be saved and restored around 
any call to a subprogram. 
In contrast, for a callee-save register, a caller need do no 
extra work at a call site (the callee saves and restores the 
register if it is used).



6

Caller-saved vs. Callee-saved

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

CALLER SAVED: MIPS calls these temporary registers, $t0-t9

• the calling program saves the registers that it does not want a 
called procedure to overwrite 

• register values are NOT preserved across procedure calls 

CALLEE SAVED: MIPS calls these saved registers, $s0-s8 

• register values are preserved across procedure calls 

• the called procedure saves register values in its AR, uses the 
registers for local variables, restores register values before it 
returns. 



7

Caller-saved vs. Callee-saved

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Registers $t0-$t9 are caller-saved registers
• … that are used to hold temporary quantities

• … that need not be preserved across calls

Registers $s0-s8 are callee-saved registers
• … that hold long-lived values

• … that should be preserved across calls

caller-saved register

• A register saved by the routine being called

callee-saved register

• A register saved by the routine making a procedure call.



8

What is it?

CPI
Cycles Per Instruction

A measure of latency (delay)?

“ADD takes 5 cycles to finish”

or

A measure of throughput?

“N ADDs are completed in N cycles”



9

CPI = weighted average throughput over all 
instructions in a given workload

CPI = 1.0 means that on average…

… an instruction is completed every 1 cycle

CPI = 2.0 means that on average…

… an instruction is completed every 2 cycles

CPI = 5.0 means that on average…

… an instruction is completed every 5 cycles



10

Example CPI = 1.0

CPI = 1.0 means that on average…

… an instruction is completed every 1 cycle



11

Example CPI = 2.0

CPI = 2.0 means that on average…

… an instruction is completed every 2 cycles



12

Example CPI = 0.5

CPI = 0.5 means that on average…

… an instruction is completed every 0.5 cycles



13

CPI Calculation

Suppose 10 stage pipeline and…

• 1 instruction zapped on every taken jump or branch

• 3 stalls for every memory operation

Q: What is CPI?

… for pure arithmetic workload?

… for pure memory workload?

… for pure jump workload?

… for 50/50 arithmetic/jump workload?

… for 50%/25%/25% arith/mem/branch?

… if one fifth of the branches are taken?


