Prelim Review

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

FAQ

FAQ

* caller/callee saved registers
* CPI

e writing assembling

* reading assembly

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)
* save before calling anything; restore after it returns

Callee-save: Always... (SsO .. Ss7)
* save before modifying; restore before returning

Caller-save registers are responsibility of the caller

» Caller-save register values saved only if used after call/return

* The callee function can use caller-saved registers wile=ssmweess
Callee-save register are the responsibility of the callee

* Values must be saved by callee before they can be used

e Caller can assume that these registers will be restored

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)

* save before calling anything; restore after it returns
Callee-save: Always... (SsO .. Ss7)

* save before modifying; restore before returning -

eax, ecx, and edx are caller-save... (/
<. ... afunction can freely modify these registers

e ... but must assume that their contents have been destroyed if it in
turns calls a function.

ebx, esi, edi. ebp, esp are callee-save

e A function may call another function and know that the callee-save
registers have not been modified

* However, if it modifies these registers itself, it must restore them to
their original values before returning.

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)

* save before calling anything; restore after it returns
Callee-save: Always... (SsO .. Ss7)

* save before modifying; restore before returning

A caller-save register must be saved and restored around
any call to a subprogram.

In contrast, for a callee-save register, a caller need do no
extra work at a call site (the callee saves and restores the
register if it is used).

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)
* save before calling anything; restore after it returns

Callee-save: Always... (SsO .. Ss7)
* save before modifying; restore before returning

CALLER SAVED: MIPS calls these temporary registers, St0-t9

* the calling program saves the registers that it does not want a
called procedure to overwrite

* register values are NOT preserved across procedure calls
CALLEE SAVED: MIPS calls these saved registers, Ss0-s8

e register values are preserved across procedure calls

* the called procedure saves register values in its AR, uses the
registers for local variables, restores register values before it
returns.

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)

* save before calling anything; restore after it returns
Callee-save: Always... (SsO .. Ss7)

* save before modifying; restore before returning

Registers St0-St9 are caller-saved registers

e ...that are used to hold temporary quantities /
e ...that need not be preserved across calls

Registers $s0-s8 are callee-saved registers«/

 ...that hold long-lived values /
e ...that should be preserved across calls

I 23

ned by the routine making a procedureT

II

(& pras

CPI

Cycles Per Instruction

cy (delay)?
“ADD take cles to finish”

or

A measure of throughput?
“N ADDs are completed in N cycles”

CPl = weighted average throughput over all
instructions in a given workload

]

CPl = 1.0 means that on average...
... an instruction is completed every 1 cycle

CPl = 2.0 means that on average...
... an instruction is completed every 2 cycles
Pl = 5.0 means that on average...
... an instruction is completed every 5 cycles

CPl = 1.0 means that on average...
... an instruction is completed every 1 cycle

g;‘/\ﬁ] C7<(Q CPU
L(ou(M‘eg C{)U

e arYhe wadk
\C/ Q kﬂq}y

CPl = 2.0 means that on average...
... an instruction is completed every 2 cycles

/&’(DJ/ C €U OL

goely sy 5%‘ i Quee

) (\l\%@‘}
J\4 Cyde

CPl = 0.5 means that on average...
... an instruction is completed every 0.5 cycles

—d D&M\ (e

12

CPI Calculation

Suppose 10 stage pipeline and...
* 1 instruction zapped on every taken jump or branch
3 stalls for every memory operation ‘

Q: What is CPI? Golo o
... for pure arithmetic workload? \ , I /&D;(P \
... for pure memory workload?] < /L{;‘b 2
... for pure jump workload? o

... for 50/50 arithmetic/jump workload? | ‘ g

.. for 50%/25%/25% arith/mem/branch? X

... if one fifth of the branches are taken? \ ‘ g

13

