Lec 7: Full Processor and
Pipelining

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

« PA 1 out
— Recitations on it this Tue/Thu/Fri

* Don’t walit till the last minute
— We are happy to help
— Hazards do at end

© Kavita Bala, Computer Science, Cornell University

Instruction Usage

Instructions are stored 01001001000001010
in memory, encoded 01001000100000000
in binary 0010010
A basic processor addr\ data)
— fetches \ '/
cur inst

— decodes pc
— executes S

. . adder decode
one instruction at a - _
time s @b

© Kavita Bala, Computer Science, Cornell University

Instructions

Load/store architecture

— Data must be in registers to be operated on
— Keeps hardware simple

Emphasis on efficient implementation

Integer data types:

— byte: 8 bits

— half-words: 16 bits

—words: 32 bits

MIPS supports signed and unsigned data

types

© Kavita Bala, Computer Science, Cornell University

MIPS Design Principles

Simplicity favors regularity
— 32 bit instructions

Smaller is faster
— Small register file

Make the common case fast
— Include support for constants

Good design demands good compromises
— Support for different type of interpretations/classes

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions

op rs rt rd shamt | func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

e ifop == 0 && func == 0x21 ADDd, rs, 1t
— R[rd] = R[rs] + R[rt] (unsigned)ADDU rd, rs, rt

e if op == 0 && func == 0x23 ANDrd, rs, rt
_ R[rd] = R[rs] - R[rt] (unsigned) OR rd rs, rt

« if op == 0 && func == 0x25 ORTd IS, 1t
—R[rd] = R[rs] | R[rt]

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions (2)

op s rd immediate
6 bits 5bits 5 bits 16 bits
o if op ==
— R[rd] = R[rs] + sign_extend(immediate)
* ifop==12 ADDI rd, rs, val
—R[rd] = R[rs] & immediate Appju rd, rs, val
ANDI rd, rs, val
ORI rd, rs, val

© Kavita Bala, Computer Science, Cornell University

Arithmetic Ops with Immediates

inst

memory register file

mux

3—2[

T2 12

00 16 | °P]°

sign extend

Ceoma>—

new pc
calculation

© Kavita Bala, Computer Science, Cornell University

MIPS Instruction Types

® Arithmetic/Logical
— three operands: result + two sources
— operands: registers, 16-bit immediates

— signed and unsigned versions

® Memory Access
— load/store between registers and memory

— half-word and byte operations

® Control flow
— conditional branches: pc-relative addresses

— jumps: fixed offsets

© Kavita Bala, Computer Science, Cornell University

Memory Operations

op rs rd immediate
6 bits 5 bits 5 bits 16 bits

* |b, Ibu, Ih, lhu, Iw

* Sb, sh, sw

 Examples rs =r4 = addr of array; r3 = rd
—Ilw r3, 0(r4) int array[32]; x = array|[0]
—Ilwr3, 16(r4) int array[32]; x = array[4]
—swr3, 0(r4) array[0] = x;

© Kavita Bala, Computer Science, Cornell University

Store

st N~ alu
memory register file l‘

»32 1»2 addr d out
00

5pb]1 -
:%6 sign
7 extend

C .\

din

data

memory
C
p new pc L‘»Qn—trcﬂ/\ I

calculation

© Kavita Bala, Computer Science, Cornell University

Control Flow (Absolute Jump)

op target
6 bits 26 bits
®j, jal

® Absolute addressing
® new PC = high 4 bits of current PC || target || 00

— Cannot jump from Oxffff000000000000 to
0x0000100000000000

— Better to make all instructions fit in 32 bits than to
support really large absolute jumps

® Examples
—jLo1 goto LO1

© Kavita Bala, Computer Science, Cornell University

Absolute Jump

addr d out

st N~ alu
memory register file l‘

b32 12
5Pb|] -

00 :%6 sign
7 extend

din

C .\

data

memory
C
p new pc L‘»Qn—trcﬂ/\ I

calculation

© Kavita Bala, Computer Science, Cornell University

Control Flow (Jump Register)

op rs 000 000 000 000 000 |func

6 bits 5 bits 15 bits 6 bits
o jrrs
* new PC = R][rs]

e Can jump to any address stored in a
register

© Kavita Bala, Computer Science, Cornell University

Jump Register

memory
32 12
00
pc new pc

calculation{

inst

register file

16
/

5P|

addr d out

= Coome)]

—

sigh
extgnd

din

data
memory

© Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

op

IS

rt

immediate

6 bits

5 bits

5 bits

16 bits

* Some branches depend on the relative

e« ifop==4 #BEQ
—if R[rs] == R][rt]

» new PC = old PC + sign_extend(immediate << 2)

. BEQ, BNE

values of two registers

© Kavita Bala, Computer Science, Cornell University

Branch

addr d out

=?
L)
inst
memory register file
b32 12
5Pb|] -
00 :%6 sign
7 extend
—

T~
2 ¢ newpe - Coomo)—|

calculatlonﬂ]

C .\

din

data
memory

© Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

op |rs

subop

immediate

6 bits 5 bits

« Some branches depend on the value of a

5 bits

single register
e ifop==1 && subop == BLTZ

—ifR[rs] <0

» new PC = old PC + sign_extend(immediate << 2)

16 bits

« BGEZ, BGTZ, BLTZ, BLEZ

© Kavita Bala, Computer Science, Cornell University

Branch

=2 || <=0?
L)
inst N 2lu
memory register file
7) /
32 1’2 addr dout
5p|4 } B .
00 :%6 sign j din
N extend data
pc \B‘ ~N I memory
povse) Ceomo)
calculation{

© Kavita Bala, Computer Science, Cornell University

Examples

A[12] = h + A[8]

lw, $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

© Kavita Bala, Computer Science, Cornell University

10

Example

if(i==j))f=g+helsef=g-h

bne $s3, $s4, Else

add $s0, $s1, $s2

] Exit

* nop

Else: sub $s0, $s1, $s2
* Nnop

Exit:

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes

1. Operand: Register addressing

Lop | rs| rt|rd] | funct | Register
l gl word operand

2. Operand: Base addressing
| op | sl rdl offset | Memory

w word or byte operand

| base reqister |

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes

3. Operand: Immediate addressing
| op | rs| rd| operand |

4. Instruction: PC-relative addressing
Lop | rs|l rdl offset | Memory

5 branch destination instruction

| Program Counter (PC) |

5. Instruction: Pseudo-direct addressing
L op | jump address | Memory

. @.‘ jump destination instruction
| | Program Counter (PC) |

© Kavita Bala, Computer Science, Cornell University

Summary

 Full-blown processor

© Kavita Bala, Computer Science, Cornell University

12

Pipelining

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

e Alice

© Kavita Bala, Computer Science, Cornell University

13

* Alice

 Bob

© Kavita Bala, Computer Science, Cornell University

e Alice

 Bob

* They don't like each other!

© Kavita Bala, Computer Science, Cornell University

14

The Laundry

» Four sequential tasks

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

» A large room with a one entry-door and
one exit-door

© Kavita Bala, Computer Science, Cornell University

15

Laundry Room Design #1

e First Alice owns the room

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

» First Alice owns the room
 Bob can enter as soon as she is done
* No possibility for Alice and Bob to fight

© Kavita Bala, Computer Science, Cornell University

S

16

Laundry Room Design #1

. : Time
Elapsed Time for Alice: 4

Elapsed Time for Bob: 4
Elapsed Time for both: 8

A better laundry room can improve utilization
and speed up task completion

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

* The room is partitioned into stages

* One person owns a stage at a time, the
room can hold up to four people
simultaneously

© Kavita Bala, Computer Science, Cornell University

17

Laundry Room Design #2

Alice

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

© Kavita Bala, Computer Science, Cornell University

18

Laundry Room Design #2

Charlie Bob

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Dave Charlie Bob Alice

© Kavita Bala, Computer Science, Cornell University

19

Laundry Room Design #2

Time

» Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
« Elapsed Time for both: 5!!!

© Kavita Bala, Computer Science, Cornell University

Throughput is good

» What about latency?

© Kavita Bala, Computer Science, Cornell University

20

Look at Real Possible Numbers

g 15 min
30 min
. |6 45 min
90 min

© Kavita Bala, Computer Science, Cornell University

W

stall

e Latency: 180 min

e Throughput: Batch every 90 min
— Bottleneck!

© Kavita Bala, Computer Science, Cornell University

21

Scenario with varying stage times

e Latency: ?
» Throughput: Batch every 45 minutes

© Kavita Bala, Computer Science, Cornell University

Pipelining

* Principle: Latencies can be masked by running
operations in parallel

* Need to identify “stages”

* Need mechanisms for isolating the operations

* Need mechanisms for handling dependencies
between stages

» Let’s apply this principle to processor design...

© Kavita Bala, Computer Science, Cornell University

22

