
1

Lec 7: Full Processor and
Pipelining

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• PA 1 out
– Recitations on it this Tue/Thu/Fri

• Don’t wait till the last minute
– We are happy to help
– Hazards do at end

2

© Kavita Bala, Computer Science, Cornell University

Instruction Usage

• Instructions are stored
in memory, encoded
in binary

• A basic processor
– fetches
– decodes
– executes

one instruction at a
time

01001001000001010
01001000100000000
10001001100010010

pc

adder

cur inst

decode

regs execute

addr data

© Kavita Bala, Computer Science, Cornell University

Instructions
• Load/store architecture

– Data must be in registers to be operated on
– Keeps hardware simple

• Emphasis on efficient implementation
• Integer data types:

– byte: 8 bits
– half-words: 16 bits
– words: 32 bits

• MIPS supports signed and unsigned data
types

3

© Kavita Bala, Computer Science, Cornell University

MIPS Design Principles
• Simplicity favors regularity

– 32 bit instructions

• Smaller is faster
– Small register file

• Make the common case fast
– Include support for constants

• Good design demands good compromises
– Support for different type of interpretations/classes

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions

• if op == 0 && func == 0x21
– R[rd] = R[rs] + R[rt] (unsigned)

• if op == 0 && func == 0x23
– R[rd] = R[rs] - R[rt] (unsigned)

• if op == 0 && func == 0x25
– R[rd] = R[rs] | R[rt]

funcshamtrdrtrsop
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ADD rd, rs, rt
ADDU rd, rs, rt
AND rd, rs, rt
OR rd, rs, rt
NOR rd, rs, rt

4

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions (2)

• if op == 8
– R[rd] = R[rs] + sign_extend(immediate)

• if op == 12
– R[rd] = R[rs] & immediate

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

ADDI rd, rs, val
ADDIU rd, rs, val
ANDI rd, rs, val
ORI rd, rs, val

© Kavita Bala, Computer Science, Cornell University

Arithmetic Ops with Immediates

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

mux

sign extend
16

32

5

© Kavita Bala, Computer Science, Cornell University

MIPS Instruction Types
• Arithmetic/Logical

– three operands: result + two sources
– operands: registers, 16-bit immediates
– signed and unsigned versions

• Memory Access
– load/store between registers and memory
– half-word and byte operations

• Control flow
– conditional branches: pc-relative addresses
– jumps: fixed offsets

© Kavita Bala, Computer Science, Cornell University

Memory Operations

• lb, lbu, lh, lhu, lw
• sb, sh, sw
• Examples rs = r4 = addr of array; r3 = rd

– lw r3, 0(r4) int array[32]; x = array[0]
– lw r3, 16(r4) int array[32]; x = array[4]
– sw r3, 0(r4) array[0] = x;

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

6

© Kavita Bala, Computer Science, Cornell University

Store

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

© Kavita Bala, Computer Science, Cornell University

Control Flow (Absolute Jump)

• j, jal
• Absolute addressing
• new PC = high 4 bits of current PC || target || 00

– Cannot jump from 0xffff000000000000 to
0x0000100000000000

– Better to make all instructions fit in 32 bits than to
support really large absolute jumps

• Examples
– j L01 goto L01

targetop
6 bits 26 bits

7

© Kavita Bala, Computer Science, Cornell University

Absolute Jump

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

© Kavita Bala, Computer Science, Cornell University

Control Flow (Jump Register)

• jr rs
• new PC = R[rs]

• Can jump to any address stored in a
register

func000 000 000 000 000rsop
6 bits 5 bits 15 bits 6 bits

8

© Kavita Bala, Computer Science, Cornell University

Jump Register

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

© Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

• Some branches depend on the relative
values of two registers

• if op == 4 # BEQ
– if R[rs] == R[rt]

new PC = old PC + sign_extend(immediate << 2)

• BEQ, BNE

immediatertrsop
6 bits 5 bits 5 bits 16 bits

9

© Kavita Bala, Computer Science, Cornell University

Branch

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in

=?

00

© Kavita Bala, Computer Science, Cornell University

Control Flow (Branches)

• Some branches depend on the value of a
single register

• if op == 1 && subop == BLTZ
– if R[rs] < 0

new PC = old PC + sign_extend(immediate << 2)

• BGEZ, BGTZ, BLTZ, BLEZ

immediatesuboprsop
6 bits 5 bits 5 bits 16 bits

10

© Kavita Bala, Computer Science, Cornell University

Branch

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in

=? <=0?

00

© Kavita Bala, Computer Science, Cornell University

Examples

• A[12] = h + A[8]

• lw, $t0, 32($s3)
• add $t0, $s2, $t0
• sw $t0, 48($s3)

11

© Kavita Bala, Computer Science, Cornell University

Example
• if (i == j) f = g + h else f = g – h

• bne $s3, $s4, Else
• add $s0, $s1, $s2
• j Exit
• nop
• Else: sub $s0, $s1, $s2
• nop
• Exit:

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
1. Operand: Register addressing

op rs rt rd funct Register
word operand

op rs rd offset
2. Operand: Base addressing

base register

Memory
word or byte operand

12

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
3. Operand: Immediate addressing

op rs rd operand

4. Instruction: PC-relative addressing
op rs rd offset

Program Counter (PC)

Memory
branch destination instruction

5. Instruction: Pseudo-direct addressing
op jump address

Program Counter (PC)

Memory
jump destination instruction||

© Kavita Bala, Computer Science, Cornell University

Summary
• Full-blown processor

13

Pipelining

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

• Alice

14

© Kavita Bala, Computer Science, Cornell University

• Alice

• Bob

© Kavita Bala, Computer Science, Cornell University

• Alice

• Bob

• They don’t like each other!

15

© Kavita Bala, Computer Science, Cornell University

The Laundry

• Four sequential tasks

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• A large room with a one entry-door and
one exit-door

16

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• First Alice owns the room

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• First Alice owns the room
• Bob can enter as soon as she is done
• No possibility for Alice and Bob to fight

17

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 8
• A better laundry room can improve utilization

and speed up task completion

Time

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• The room is partitioned into stages
• One person owns a stage at a time, the

room can hold up to four people
simultaneously

18

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Alice

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob Alice

19

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob AliceCharlie

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob AliceCharlieDave

20

© Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 5!!!

Time

© Kavita Bala, Computer Science, Cornell University

Throughput is good

• What about latency?

21

© Kavita Bala, Computer Science, Cornell University

Look at Real Possible Numbers

• 15 min

• 30 min

• 45 min

• 90 min

© Kavita Bala, Computer Science, Cornell University

Impact

• Latency: 180 min
• Throughput: Batch every 90 min

– Bottleneck!

stall stall stall

22

© Kavita Bala, Computer Science, Cornell University

Scenario with varying stage times

• Latency: ?
• Throughput: Batch every 45 minutes

© Kavita Bala, Computer Science, Cornell University

Pipelining
• Principle: Latencies can be masked by running

operations in parallel

• Need to identify “stages”
• Need mechanisms for isolating the operations
• Need mechanisms for handling dependencies

between stages

• Let’s apply this principle to processor design…

