
1

Lec 6: Simple Processor

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Summary
• We now have enough building blocks to

build machines that can perform non-trivial
computational tasks

• SRAM: caches
• DRAM: main memory

2

A Simple Processor

Chapters 2 and 5 in book

© Kavita Bala, Computer Science, Cornell University

Instructions
• Programs are written in a

high-level language
– C, Java, Python, Miranda, …
– Loops, control flow, variables

• Need translation to a lower-
level computer
understandable format
– Processors operate on

machine language
– Assembler is human-

readable machine language

for(i = 0; I < 10; ++i)

printf(“go cornell cs”);

li r2, 10
li r1, 0
slt r3, r1, r2
bne …

01001001000001010
01001000100000000
10001001100010010

3

© Kavita Bala, Computer Science, Cornell University

Basic Computer System
• A processor executes instructions

– Processor has some internal state in storage
elements (registers)

• A memory holds instructions and data
– Harvard architecture: separate insts and data
– von Neumann architecture: combined inst and

data
• A bus connects the two

regs bus

processor memory

01010000
10010100

…addr, data,
r/w

© Kavita Bala, Computer Science, Cornell University

Instruction Usage

• Instructions are stored
in memory, encoded
in binary

• A basic processor
– fetches
– decodes
– executes

one instruction at a
time

01001001000001010
01001000100000000
10001001100010010

pc

adder

cur inst

decode

regs execute

addr data

4

© Kavita Bala, Computer Science, Cornell University

Instruction Types
• Arithmetic

– add, subtract, shift left, shift right, multiply, divide
– compare

• Control flow
– unconditional jumps
– conditional jumps (branches)
– subroutine call and return

• Memory
– load value from memory to a register
– store value to memory from a register

• Many other instructions are possible
– vector add/sub/mul/div, string operations, store

internal state of processor, restore internal state of
processor, manipulate coprocessor

© Kavita Bala, Computer Science, Cornell University

Instruction Set Architecture
• The types of operations permissible in machine

language define the ISA
– MIPS: load/store, arithmetic, control flow, …
– VAX: load/store, arithmetic, control flow, strings, …
– Cray: vector operations, …

• Two classes of ISAs
– Reduced Instruction Set Computers (RISC)
– Complex Instruction Set Computers (CISC)

• We’ll study the MIPS ISA in this course

5

© Kavita Bala, Computer Science, Cornell University

Instructions
• Load/store architecture

– Data must be in registers to be operated on
– Keeps hardware simple

• Emphasis on efficient implementation
• Integer data types:

– byte: 8 bits
– half-words: 16 bits
– words: 32 bits

• MIPS supports signed and unsigned data
types

© Kavita Bala, Computer Science, Cornell University

MIPS Design Principles
• Simplicity favors regularity

– 32 bit instructions

• Smaller is faster
– Small register file

• Make the common case fast
– Include support for constants

• Good design demands good compromises
– Support for different type of interpretations/classes

6

© Kavita Bala, Computer Science, Cornell University

Register file

• The MIPS register file
– 32 32-bit registers
– register 0 is permanently

wired to 0
– Write-Enable and RW

determine which reg to modify
– Two output ports A and B
– RA and RB choose values

read on outputs A and B
– Writes occur on falling edge if

WE is high

clk

W

32 32

32

A

B

r31
…
r2
r1

555

WE RWRA RB

© Kavita Bala, Computer Science, Cornell University

Memory
• 32-bit address
• 32-bit data

– word = 32 bits
• 2-bit memory

control input
memory

data in data out

32

addr
2

mc 00: read
01: write byte
10: write halfword
11: write word

7

© Kavita Bala, Computer Science, Cornell University

Instruction Fetch
• Read

instruction
from memory

• Calculate
address of
next
instruction

• Fetch next
instruction

memory

inst

32

pc

2

00

new pc
calculation

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions

• if op == 0 && func == 0x21
– R[rd] = R[rs] + R[rt] (unsigned)

• if op == 0 && func == 0x23
– R[rd] = R[rs] - R[rt] (unsigned)

• if op == 0 && func == 0x25
– R[rd] = R[rs] | R[rt]

funcshamtrdrtrsop
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ADD rd, rs, rt
ADDU rd, rs, rt
AND rd, rs, rt
OR rd, rs, rt
NOR rd, rs, rt

8

© Kavita Bala, Computer Science, Cornell University

Arithmetic Ops

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

© Kavita Bala, Computer Science, Cornell University

Arithmetic Logic Unit
• Implements

add, sub, or,
and, shift-
left, …

• Operates on
operands in
parallel

• Control mux
selects
desired
output

+A

B

cin

9

© Kavita Bala, Computer Science, Cornell University

Arithmetic Instructions (2)

• if op == 8
– R[rd] = R[rs] + sign_extend(immediate)

• if op == 12
– R[rd] = R[rs] & immediate

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

ADDI rd, rs, val
ADDIU rd, rs, val
ANDI rd, rs, val
ORI rd, rs, val

© Kavita Bala, Computer Science, Cornell University

Sign Extension

• Often need to convert a small (8-bit or
16-bit) signed value to a larger (16-bit or
32-bit) signed value
– “1” in 8 bits: 00000001
– “1” in 16 bits: 0000000000000001
– “-1” in 8 bits: 11111111
– “-1” in 16 bits: 1111111111111111

• Conversion from small to larger numbers
involves replicating the sign bit

10

© Kavita Bala, Computer Science, Cornell University

Arithmetic Ops with Immediates

memory

inst

32

pc

2

00

new pc
calculation

register file

control

5 5 5

alu

mux

sign extend
16

32

© Kavita Bala, Computer Science, Cornell University

Summary
• With an ALU and fetch-decode unit, we

have the equivalent of Babbage’s
computation engine
– Much faster, more reliable, no mechanical

parts

• Next: control flow and memory operations

11

© Kavita Bala, Computer Science, Cornell University

MIPS Instruction Types
• Arithmetic/Logical

– three operands: result + two sources
– operands: registers, 16-bit immediates
– signed and unsigned versions

• Memory Access
– load/store between registers and memory
– half-word and byte operations

• Control flow
– conditional branches: pc-relative addresses
– jumps: fixed offsets

© Kavita Bala, Computer Science, Cornell University

Memory Operations

• lb, lbu, lh, lhu, lw
• sb, sh, sw
• Examples rs = r4 = addr of array; r3 = rd

– lw r3, 0(r4) int array[32]; x = array[0]
– lw r3, 16(r4) int array[32]; x = array[4]
– sw r3, 0(r4) array[0] = x;

immediaterdrsop
6 bits 5 bits 5 bits 16 bits

12

© Kavita Bala, Computer Science, Cornell University

Load

memory

inst

32

pc

2
00

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

© Kavita Bala, Computer Science, Cornell University

Store

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

13

© Kavita Bala, Computer Science, Cornell University

Control Flow (Absolute Jump)

• j, jal
• Absolute addressing
• new PC = high 4 bits of current PC || target || 00

– Cannot jump from 0xffff000000000000 to
0x0000100000000000

– Better to make all instructions fit in 32 bits than to
support really large absolute jumps

• Examples
– j L01 goto L01

targetop
6 bits 26 bits

© Kavita Bala, Computer Science, Cornell University

Absolute Jump

memory

inst

32

pc

2

new pc
calculation

register file

control

5 5 5

alu

sign
extend

16
32

data
memory

addr d out

d in00

