
1

Lec 5: Memory and a Simple
Processor

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

de
co

s4

s1
s2
s3

A Vote Counter
• Encode
• Decode
• Register file of

counts
• Data values flow

from register file
• To addition unit
• Back to register

fileen
c

re
g

re
g

..

clk

s1

s4

re
g

m
ux

8

01

8 ad
dr 8

le
d-

de
c

2

© Kavita Bala, Computer Science, Cornell University

Two Questions

• Addition is very important
– Is this design fast enough?
– Also, is this design general enough?

© Kavita Bala, Computer Science, Cornell University

Performance
• Speed of a circuit is affected by the

number of gates in series (on the critical
path or the deepest level of logic)

• The speed of a gate is affected by the
number of inputs

3

© Kavita Bala, Computer Science, Cornell University

4-bit Ripple Carry Adder
A3 B3

R3

C4

A1 B1

R1

A2 B2

R2

A0 B0

C0

R0

C1C2C3

• First adder, 2 gate delay
• Second adder, 2 gate delay

Carry ripples from right to left

© Kavita Bala, Computer Science, Cornell University

Observations
• Have to wait for Cin

• Can we compute in parallel in some way?

• CLA carry look-ahead adder

4

© Kavita Bala, Computer Science, Cornell University

Carry Look Ahead Logic
• Can we reason independent of Cin?

– Just based on (A,B) only

• When is Cout == 1, irrespective of Cin

• If Cin == 1, when is Cout also == 1

© Kavita Bala, Computer Science, Cornell University

1-bit CLA adder
A B

Cin
R

p g

• Create two terms: propagator, generator
• g = 1, generates Cout: g = AB

– Irrespective of Cin
• p = 1, propagates Cin to Cout: p = A xor B
• p and g generated in 1 cycle delay
• R is 2 cycle delay after we get Cin

5

© Kavita Bala, Computer Science, Cornell University

4-bit CLA
A B

C0

p g

A B

p g

A B

p g

A B

p g

CLL (carry look-ahead logic)

•CLL takes p,g from all 4 bits, C0 and generates all Cs
• 2 gate delay

C1=g0+p0C0
C2=g1+p1C1

= g1 + p1(g0+p0C0) = g1+p1g0+p1p0C0
C3=g2+p2g1+p2p1g0+p2p1p0c0
C4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

C1C2C3

C4

R

© Kavita Bala, Computer Science, Cornell University

4-bit CLA

A0 B0

C0

A1 B1A2 B2A3 B3

CLL (carry look-ahead logic)

p0 g0p1 g1p2 g2p3 g3

• Given A,B’s, all p,g’s are generated in 1 gate delay in parallel.

C1C2C3

• Given all p,g’s, all C’s are generated in 2 gate delay in parallel.

R3 R2 R1 R0

• Given all C’s, all R’s are generated in 2 gate delay in parallel.

•Sequential operation in RCA is made into parallel operation!!

6

© Kavita Bala, Computer Science, Cornell University

Ripple Carry vs Carry Lookahead

• Ripple carry adder vs Carry lookahead
adder for 8 or 16 bits
– 2 x 8 vs. 5
– 2 x 16 vs. 5

• Can’t do it for all 32 bits though
• So use hierarchical construction

Memory

7

© Kavita Bala, Computer Science, Cornell University

Register File

• Set of registers
– Read or written
– Use register number to access it

• Read or write ports
– Decoder for each port

• D or SR flip flops to store bits

© Kavita Bala, Computer Science, Cornell University

8

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

9

© Kavita Bala, Computer Science, Cornell University

Memory
• Various technologies

– S-RAM, D-RAM, NV-RAM

• Non-Volatile RAM
– Data remains valid even through power outages
– More expensive
– Limited lifetime; after 100000 to 1M writes, NV-

RAM degrades

– Flash cards

© Kavita Bala, Computer Science, Cornell University

Static RAM: SRAM
• Static-RAM

– So called because once stored, data values
are stable as long as electricity is supplied

– Based on regular flip-flops with gates

10

© Kavita Bala, Computer Science, Cornell University

Tristate Buffers

© Kavita Bala, Computer Science, Cornell University

Tristate Buffers

111
001
Z10
Z00
zxc• 3 states

– asserted (1)
– deasserted (0)
– high impedance (Z)

11

© Kavita Bala, Computer Science, Cornell University

How to build large memories?

• Cannot use a 2M->1 multiplexer!
• Use a shared line (called bit line)
• Can create a bus out of multiple bit lines
• Only one of the inputs can drive the output

© Kavita Bala, Computer Science, Cornell University

12

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Big Memories
• Tri state buffer got rid of big mux

• But still need a big decoder to pick the
right entry
– 2M x 16 SRAM requires

21 to 2M decoder
And 2M lines!

• Instead
– Rectangular arrays
– 2-step decode

13

© Kavita Bala, Computer Science, Cornell University

Parallel Memory Banks

© Kavita Bala, Computer Science, Cornell University

SRAM

• Needs a few gates per cell

• Used for caches (we talk about this later)

• For higher density, use DRAM

14

© Kavita Bala, Computer Science, Cornell University

Dynamic RAM: DRAM
• Dynamic-RAM

– Data values require constant refresh
– Internal circuitry keeps capacitor charges

© Kavita Bala, Computer Science, Cornell University

DRAM
• Single transistor vs. many gates

– Denser and cheaper

• But, need refresh
– Read and write back
– Every few milliseconds…
– Also organized in 2D grid, so can do rows at a

time
– Done independently on chip

• Hence, slower

15

© Kavita Bala, Computer Science, Cornell University

Summary
• We now have enough building blocks to

build machines that can perform non-trivial
computational tasks

• SRAM: caches
• DRAM: main memory

