
1

Lec 4: Finite State Machines and
Arithmetic

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

References

• Look at Appendix B in textbook

• Look in Chapter 3 in textbook for today

2

© Kavita Bala, Computer Science, Cornell University

FSM: Serial Adder
• Add two input bit streams

– streams are sent with least-significant-bit (lsb)
first

…10110

…01111
…00101

© Kavita Bala, Computer Science, Cornell University

FSM: State Diagram

• Two states: S0 (no carry), S1 (carry in)
• Inputs: a and b
• Output: z

– Arcs labelled w/ input bits a and b, and output z

S0 S100/0

10/1 01/1 10/0 01/0

11/1

00/1

11/0

3

© Kavita Bala, Computer Science, Cornell University

Serial Adder: State Table
• Write down all input

and state
combinations

S11S111
S10S101
S10S110
S01S100
S10S011
S01S001
S01S010
S00S000

next
state

zstateba

© Kavita Bala, Computer Science, Cornell University

Serial Adder: State Assignment
• Two states, so 1-bit

is sufficient
– A single flip-flop will

encode the state

11111
10101
10110
01100
10011
01001
01010
00000
s’zsba

4

© Kavita Bala, Computer Science, Cornell University

Serial Adder: Circuit

• Equations
– z = abs + abs + abs + abs
– s’ = abs + abs + abs + abs

clk

Q D

z
a

b
combinational

logic

s s’

© Kavita Bala, Computer Science, Cornell University

Recap

• We can build combinatorial circuits
– Gates, minimization

• We can build stateful circuits
– Record 1-bit values in latches and flip-flops

• Powerful combination
– We can build real, useful devices
– But we will often need to perform arithmetic

5

© Kavita Bala, Computer Science, Cornell University

Binary Arithmetic

• Arithmetic works the same
way regardless of base
– Add the digits in each position
– Propagate the carry

• Unsigned binary addition is
pretty easy
– Combine two bits at a time
– Along with a carry

12
+ 25

37

001100
+ 011010

100110

© Kavita Bala, Computer Science, Cornell University

1-bit Adder
A0 B0

Cout

R0

1

1

0

0

A0

0

1

1

0

R0

1

0

0

0

Cout

0

1

0

1

B0

• Adds two 1-bit numbers,
computes 1-bit result and carry out

• Useful for the rightmost binary digit, not
much else

6

© Kavita Bala, Computer Science, Cornell University

1-bit Adder with Carry

Ai Bi

CinCout

Ri
1

1

0

0

1

1
0

0

Ai

1

0

0

1

0

1
1

0

Ri

1

1

1

0

1

0
0

0

Cout

11

11

00

10

00

01

01

10

BiCi
n

• Adds two 1-bit numbers, along with carry-
in, computes 1-bit result and carry out

• Can be cascaded to add N-bit numbers

© Kavita Bala, Computer Science, Cornell University

4-bit Adder
A0 B0

R0

• Adds two 4-bit numbers, along with carry-
in, computes 4-bit result and overflow

• Overflow indicates that the result does not
fit in 4 bits

A1 B1

R1

A2 B2

R2

A3 B3

R3

Over
flow

0

7

© Kavita Bala, Computer Science, Cornell University

Two Questions

• Addition is very important
– Is this design fast enough?
– Also, is this design general enough?

© Kavita Bala, Computer Science, Cornell University

Arithmetic with Negative Numbers

• Negative numbers complicate
arithmetic

• Recall that for addition and
subtraction, the rules are:
– Both positive => add, result positive
– One +, one - => subtract small number

from larger one
– Both negative => add, result negative

8

© Kavita Bala, Computer Science, Cornell University

Arithmetic with Negative Numbers

• We could represent sign with an
explicit bit
– the “sign-magnitude form”
– But arithmetic would be much easier to

perform in hardware if we did not have
to examine the operands’ signs

• Two’s complement representation
enables arithmetic to be performed
without examining the operands

© Kavita Bala, Computer Science, Cornell University

Two’s Complement
• Nonnegative numbers are represented as usual

– 0 = 0000
– 1 = 0001
– 3 = 0011
– 7 = 0111

• To negate a number, flip all bits, add one
– -1: 1 ⇒ 0001 ⇒ 1110 ⇒ 1111
– -3: 3 ⇒ 0011 ⇒ 1100 ⇒ 1101
– -7: 7 ⇒ 0111 ⇒ 1000 ⇒ 1001
– -8: 8 ⇒ 1000 ⇒ 0111 ⇒ 1000
– -0: 0 ⇒ 0000 ⇒ 1111 ⇒ 0000 (this is good, -0 = +0)

9

© Kavita Bala, Computer Science, Cornell University

Two’s Complement Facts
• Negative numbers have a leading 1

– Similar to signed magnitude form
– Largest negative=1000…0
– Largest positive=0111…1
– Top most bit: sign bit

• N bits can be used to represent
– unsigned: the range 0..2N-1
– ex: 8 bits ⇒ 0..255
– two’s complement: the range –(2N-1).. (2N-1)-1
– ex: 8 bits ⇒ (10000000)..(01111111)
– ⇒ -128..127

© Kavita Bala, Computer Science, Cornell University

Want to change bit size of number?

• 4 bit to 8 bit
– For positive number, just 0’s in new 4 bits
– For negative number, 1’s in new 4 bits

• What about shifting
– sll (shift left logical)
– sra (shift right arithmetic)
– srl (shift right logical)

10

© Kavita Bala, Computer Science, Cornell University

Two’s Complement Addition
• Perform addition as usual, regardless of

sign
– 1 = 0001, 3 = 0011, 7 = 0111, 0 = 0000
– -1 = 1111, -3 = 1101, -7 = 1001

• Examples
– 1 + -1 = 1111 + 0001 = 0000 (0)
– -3 + -1 = 1111 + 1101 = 1100 (-4)
– -7 + 3 = 1001 + 0011 = 1100 (-4)
– 7 + (-3) = 0111 + 1101 = 0100 (4)
– 7 + 1, -7 + -3, -7 + -1

© Kavita Bala, Computer Science, Cornell University

Overflow
• When can it occur?

– If you add a negative and positive number
Cannot occur (Why?)

– If you add two negatives or two positives
Can occur (Why?)

– Add two positives, and get a negative number
– Or, add two negatives, get a positive number

Overflow!
– Overflow when

Carry into most significant bit (msb) != carry out of
msb

11

© Kavita Bala, Computer Science, Cornell University

Two’s Complement Adder

A0 B0

R0

• Let’s build a two’s complement adder

• Already built, just needed to modify
overflow checking

A1 B1

R1

A2 B2

R2

A3 B3

R3

over
flow

0

© Kavita Bala, Computer Science, Cornell University

Subtraction

• Why create a new circuit?

• Just use addition
– How?

12

© Kavita Bala, Computer Science, Cornell University

Two’s Complement Subtraction

• Subtraction is simply addition, where one
of the operands has been negated
– Negation is done by inverting all bits and

adding one

R0R1R2R3

1

A0

B0

A1

B1

A2

B2

A3

B3

over
flow

© Kavita Bala, Computer Science, Cornell University

A Calculator

• Enter numbers to
be added or
subtracted using
toggle switches

• Select: ADD or
SUBTRACT

• Muxes feed A and
B,or A and –B, to
the 8-bit adder

• The 8-bit decoder
for the hex display
is straightforward

0
1

ad
de

r
m

ux

m
ux

re
g

re
g

le
d-

de
c

8

8
8

8

8

add/sub select

…
…

doit

