Lec 4: Finite State Machines and Arithmetic

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

References

- Look at Appendix B in textbook
- Look in Chapter 3 in textbook for today

FSM: Serial Adder

- Add two input bit streams
- streams are sent with least-significant-bit (lsb) first

- Two states: S0 (no carry), S1 (carry in)
- Inputs: a and b
- Output: z
- Arcs labelled w/ input bits a and b, and output z

Serial Adder: State Table

a	b	state	z	next state
0	0	S 0	0	S 0
0	1	S 0	1	S 0
1	0	S 0	1	S 0
1	1	SO	0	S 1
0	0	S 1	1	S 0
0	1	S 1	0	S 1
1	0	S 1	0	S 1
1	1	S 1	1	S 1

- Write down all input and state combinations

Serial Adder: State Assignment

- Two states, so 1-bit is sufficient
- A single flip-flop will encode the state

a	b	s	z	s^{\prime}
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Recap

- We can build combinatorial circuits
- Gates, minimization
- We can build stateful circuits
- Record 1-bit values in latches and flip-flops
- Powerful combination
- We can build real, useful devices
- But we will often need to perform arithmetic

Binary Arithmetic

12 - Arithmetic works the same
$+25$
37 way regardless of base

- Add the digits in each position
- Propagate the carry

001100 • Unsigned binary addition is pretty easy

- Combine two bits at a time
- Along with a carry

1-bit Adder

$\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{0}}$	$\mathbf{C}_{\text {out }}$	$\mathbf{R}_{\mathbf{0}}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Adds two 1-bit numbers, computes 1-bit result and carry out
- Useful for the rightmost binary digit, not much else

1-bit Adder with Carry

$\mathbf{C}_{\mathbf{i}}$	$\mathbf{A}_{\mathbf{i}}$	$\mathbf{B}_{\mathbf{i}}$	$\mathbf{C}_{\text {out }}$	$\mathbf{R}_{\mathbf{i}}$
\mathbf{n}				
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Adds two 1-bit numbers, along with carryin, computes 1-bit result and carry out
- Can be cascaded to add N-bit numbers

- Adds two 4 -bit numbers, along with carryin, computes 4-bit result and overflow
- Overflow indicates that the result does not fit in 4 bits

Two Questions

- Addition is very important
- Is this design fast enough?
- Also, is this design general enough?

Arithmetic with Negative Numbers

- Negative numbers complicate arithmetic
- Recall that for addition and subtraction, the rules are:
-Both positive => add, result positive
-One +, one - => subtract small number from larger one
-Both negative => add, result negative

Arithmetic with Negative Numbers

- We could represent sign with an explicit bit
-the "sign-magnitude form"
-But arithmetic would be much easier to perform in hardware if we did not have to examine the operands' signs
- Two's complement representation enables arithmetic to be performed without examining the operands

Two's Complement

- Nonnegative numbers are represented as usual
- $0=0000$
- $1=0001$
- $3=0011$
$-7=0111$
- To negate a number, flip all bits, add one
$--1: 1 \Rightarrow 0001 \Rightarrow 1110 \Rightarrow 1111$
$--3: 3 \Rightarrow 0011 \Rightarrow 1100 \Rightarrow 1101$
$--7: 7 \Rightarrow 0111 \Rightarrow 1000 \Rightarrow 1001$
$--8: 8 \Rightarrow 1000 \Rightarrow 0111 \Rightarrow 1000$
$--0: 0 \Rightarrow 0000 \Rightarrow 1111 \Rightarrow 0000$ (this is good, $-0=+0$)

Two's Complement Facts

- Negative numbers have a leading 1
- Similar to signed magnitude form
- Largest negative=1000... 0
- Largest positive=0111... 1
- Top most bit: sign bit
- N bits can be used to represent
- unsigned: the range $0 . .2^{\mathrm{N}}-1$
- ex: 8 bits $\Rightarrow 0 . .255$
- two's complement: the range $-\left(2^{\mathrm{N}-1}\right) . .\left(2^{\mathrm{N}-1}\right)-1$
- ex: 8 bits \Rightarrow (10000000)..(01111111)
$-\Rightarrow-128 . .127$

Want to change bit size of number?

- 4 bit to 8 bit
- For positive number, just 0's in new 4 bits
- For negative number, 1's in new 4 bits
- What about shifting
- sll (shift left logical)
- sra (shift right arithmetic)
- srl (shift right logical)

Two's Complement Addition

- Perform addition as usual, regardless of sign
$-1=0001,3=0011,7=0111,0=0000$
$--1=1111,-3=1101,-7=1001$
- Examples
$-1+-1=1111+0001=0000(0)$
$--3+-1=1111+1101=1100(-4)$
$--7+3=1001+0011=1100(-4)$
$-7+(-3)=0111+1101=0100(4)$
$-7+1,-7+-3,-7+-1$

Overflow

- When can it occur?
- If you add a negative and positive number
- Cannot occur (Why?)
- If you add two negatives or two positives
- Can occur (Why?)
- Add two positives, and get a negative number
- Or, add two negatives, get a positive number
- Overflow!
- Overflow when
- Carry into most significant bit (msb) != carry out of msb

Two's Complement Adder

- Let's build a two's complement adder

- Already built, just needed to modify overflow checking

Subtraction

- Why create a new circuit?
- Just use addition
- How?

Two's Complement Subtraction

- Subtraction is simply addition, where one of the operands has been negated
- Negation is done by inverting all bits and adding one

A Calculator

- Enter numbers to be added or subtracted using toggle switches
- Select: ADD or SUBTRACT
- Muxes feed A and B,or A and -B, to the 8 -bit adder
- The 8-bit decoder for the hex display is straightforward

