
1

Lec 2: Gates and Logic

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• Class newsgroup created
– Posted on web-page

• Use it for partner finding

• First assignment is to find partners
– Due this Friday

• Sections start this week

2

© Kavita Bala, Computer Science, Cornell University

A switch

• A switch is a
simple device that
can act as a
conductor or
isolator

• Can be used for
amazing things…

© Kavita Bala, Computer Science, Cornell University

Transistors

• Solid-state switch
– The most amazing

invention of the 1900s

• PNP and NPN

base

collector

emitter

NP Pcollector emitter
- +

PNP

base

base

collector

PN N

emitter

+ - NPN

3

© Kavita Bala, Computer Science, Cornell University

• NPN Transistor

• Connect E to C when
base = 1

P and N Transistors
• PNP Transistor

• Connect E to C when
base = 0

E

C

E

C

B B

© Kavita Bala, Computer Science, Cornell University

Inverter

01
10

OutIn

• Function: NOT
• Called an inverter
• Symbol:

• Useful for taking the
inverse of an input

• CMOS: complementary-symmetry metal–oxide–
semiconductor

in out

Truth table

in out

4

© Kavita Bala, Computer Science, Cornell University

NAND Gate

011
110
101
100

outBA

• Function: NAND
• Symbol:

b
a out

© Kavita Bala, Computer Science, Cornell University

NOR Gate

a

out

+Vdd

Vss

b

011
010
001
100

outBA

• Function: NOR
• Symbol:

b
a out

5

© Kavita Bala, Computer Science, Cornell University

Building Functions
• NOT:

• AND:

• OR:

• NAND and NOR are universal
– Can implement any function with NAND or just

NOR gates
– useful for manufacturing

© Kavita Bala, Computer Science, Cornell University

Building Functions
• NOT:

• AND:

• OR:

• NAND and NOR are universal
– Can implement any function with NAND or just

NOR gates
– useful for manufacturing

b
a

b

a

6

© Kavita Bala, Computer Science, Cornell University

Logic Equations
• AND

– out = a b = a&b = a∧b
• OR

– out = a + b = a|b = a∨b
• NOT

– out = a = !a = ¬a

© Kavita Bala, Computer Science, Cornell University

Identities
• Identities useful for manipulating logic equations

– For optimization & ease of implementation

– a + a = 1
– a + 0 = a
– a + 1 = 1
– a a = 0
– a 0 = 0
– a 1 = a
– a(b+c) = a + bc
– (a + b) = a b
– (a b) = a + b
– a + a b = a

7

© Kavita Bala, Computer Science, Cornell University

Logic Manipulation

11111111
10111011
10111101
10111001
11111110
00001010
00010100
00000000

RHSbcLHSa+ca+bcba

• Can specify functions by describing gates, truth
tables or logic equations

• Can manipulate logic equations algebraically
• Can also use a truth table to prove equivalence
• Example: (a+b)(a+c) = a + bc

(a+b)(a+c)
= aa + ab + ac + bc
= a + a(b+c) + bc
= a(1 + (b+c)) + bc
= a + bc

© Kavita Bala, Computer Science, Cornell University

Logic Minimization
• A common problem is how to implement a desired

function most efficiently
• One can derive the equation from the truth table

• How does one find the most efficient equation?
– Manipulate algebraically until satisfied
– Use Karnaugh maps (or K maps)

abc
abc
abc
abc
abc
abc
abc
abc

minterm

111

101

000

110
010

011

001

100

cba for all outputs
that are 1,
take the corresponding
minterm
Obtain the result in
“sum of products” form

8

© Kavita Bala, Computer Science, Cornell University

Multiplexer
• A multiplexer selects

between multiple inputs
– out = a, if d = 0
– out = b, if d = 1

• Build truth table
• Minimize diagram
• Derive logic diagram

a

b

d

0

© Kavita Bala, Computer Science, Cornell University

Multiplexer Implementation

1
1
0
1
1
0
0
0

out

111

101

000

110
010

011

001

100

dba

• Build a truth table
= abd + abd + a bd + a b d
= ad + bd

a
b

d

0

9

© Kavita Bala, Computer Science, Cornell University

Multiplexer Implementation

1
1
0
1
1
0
0
0

out

111

101

000

110
010

011

001

100

dba

• Draw the circuit

– out = ad + bd

a
b

d

0

d out

b

a

© Kavita Bala, Computer Science, Cornell University

Logic Gates
• One can buy gates

separately
– ex. 74xxx series of

integrated circuits
– cost ~$1 per chip, mostly

for packaging and testing

• Cumbersome, but
possible to build devices
using gates put together
manually

10

© Kavita Bala, Computer Science, Cornell University

Integrated Circuits

• Or one can manufacture a complete
design using a custom mask

• Intel Pentium has approximately 125
million transistors

© Kavita Bala, Computer Science, Cornell University

Voting machine
• Build something interesting

• A voting machine
– Elections are coming up!

• Assume:
– A vote is recorded on a piece of paper,
– by punching out a hole,
– there are at most 7 choices
– we will not worry about “hanging chads” or

“invalids”

11

© Kavita Bala, Computer Science, Cornell University

Voting machine
• For now, let’s just display the numerical identifier to

the ballot supervisor
– we won’t do counting yet, just decoding
– we can use four photo-sensitive transistors to

find out which hole is punched out

• A photo-sensitive
transistor detects the
presence of light

• Photo-sensitive material
triggers the gate

© Kavita Bala, Computer Science, Cornell University

Ballot Reading
– Input: paper with a

hole in it

– Out: number the
ballot supervisor can
record

Ballots The 3410 vote recording
machine

12

© Kavita Bala, Computer Science, Cornell University

Encoders
• N sensors in a row
• Want to distinguish

which of the N sensors
has fired

• Want to represent the
firing sensor number in
compact form
– N might be large
– Only one wire is on at

any time
– Silly to route N wires

everywhere, better to
encode in log N wires

a
b o0

1

c
d

2
3
4 o1

A 3-bit encoder
(7-to-3)

(5 inputs shown)

o2
e 5

.

.

© Kavita Bala, Computer Science, Cornell University

Number Representations
• Decimal numbers are written

in base 10
– 3 x 101 + 7 x 100 = 37

• Just as easily use other
bases
– Base 2 - “Binary”
– Base 8 - “Octal”
– Base 16 – “Hexadecimal”

37
101 100

13

© Kavita Bala, Computer Science, Cornell University

Number Representations
• Base conversion via repetitive

division
– Divide by base,

write remainder,
move left with quotient

– Sanity check with 37 and 10

37
101 100

© Kavita Bala, Computer Science, Cornell University

Binary Representation

0100101
26 25 24 23 22 21 20

• 37 = 32 + 4 + 1

64 32 16 8 4 2 1

14

© Kavita Bala, Computer Science, Cornell University

Hexadecimal Representation
• 37 decimal = (25)16
• Convention

– Base 16 is written with a leading 0x
– 37 = 0x25

• Need extra digits!
– 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, A, B, C, D, E, F

• Binary to hexadecimal is easy
– Divide into groups of 4, translate

groupwise into hex digits

25
161 160

© Kavita Bala, Computer Science, Cornell University

Encoder Truth Table

a

b

1

c

d

2

3

4

o1

A 3-bit
encoder
with 4 inputs
for simplicity

1

0

0

0

0

o2

0

1

0

1

0

o0

0

1

1

0

0

o1

1

0

0

0

0

d

000

100

010

000

001

cba

o0

o1

o2

• o2 = abcd
• o1 = abcd + abcd
• o0 = abcd + abcd

15

© Kavita Bala, Computer Science, Cornell University

Ballot Reading
• Ok, we built

first half of the
machine

• Need to display
the result

Ballots The 3410 voting
machine

© Kavita Bala, Computer Science, Cornell University

7-Segment LED Decoder
• 4 inputs encoded

in binary
• 8 outputs, each

driving an
independent,
rectangular LED

• Can display
numbers

• Just a simple logic circuit
• Write the truth table

16

© Kavita Bala, Computer Science, Cornell University

7-Segment LED Decoder
• 4 inputs encoded

in binary
• 8 outputs, each

driving an
independent,
rectangular LED

• Can display
numbers

0
1

0
0

© Kavita Bala, Computer Science, Cornell University

7-Segment LED Decoder
• 4 inputs encoded

in binary
• 8 outputs, each

driving an
independent,
rectangular LED

• Can display
numbers

0
1

1
0

17

© Kavita Bala, Computer Science, Cornell University

7-Segment Decoder Truth Table

1
1

0

1

1

0

1

1

0

1

o5

1011111001
1111110001

1

1

1

1

0

0

0

0

i2

1

0

1

0

1

1

0

1

o1

0

1

1

1

0

0

0

1

o2

0

1

1

1

1

0

1

1

o6

0

1

0

0

0

1

0

1

o4

0

1

1

1

1

1

0

0

o3

1

0

0

1

1

1

1

1

o0

110

100

000

110

010

010

000

100

i0i1i3

o0

o1

o2

o3

o4

o5

o6

Exercise: find the error(s) in this truth table

© Kavita Bala, Computer Science, Cornell University

7-Segment Decoder Truth Table

1
1

0

1

1

0

1

1

0

1

o5

1011111001
1111110001

1

1

1

1

0

0

0

0

i
2

1

0

1

0

1

1

0

1

o1

0

1

1

1

0

0

0

1

o2

1

1

1

1

1

0

1

1

o6

0

1

0

0

0

1

0

1

o4

0

1

1

1

1

1

0

0

o3

1

0

0

1

1

1

1

1

o0

110

100

000

110

010

010

000

100

i0i
1

i
3

o0

o1

o2

o3

o4

o5

o6

18

© Kavita Bala, Computer Science, Cornell University

Ballot Reading
• Done!

Ballots The 3410 voting
machine

© Kavita Bala, Computer Science, Cornell University

Summary
• We can now implement any logic circuit

– Can do it efficiently, using Karnaugh maps to
find the minimal terms required

– Can use either NAND or NOR gates to
implement the logic circuit

– Can use P- and N-transistors to implement
NAND or NOR gates

