Lec 2: Gates and Logic

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

- Class newsgroup created
- Posted on web-page
- Use it for partner finding
- First assignment is to find partners
- Due this Friday
- Sections start this week

A switch

- A switch is a simple device that can act as a conductor or isolator
- Can be used for amazing things...

P and N Transistors

- PNP Transistor

- NPN Transistor

- Connect E to C when base $=0$
- Connect E to C when base = 1

Inverter

- Function: NOT
- Called an inverter
- Symbol:

In	Out
0	1
1	0

Truth table

- Useful for taking the inverse of an input
- CMOS: complementary-symmetry metal-oxidesemiconductor

Building Functions

- NOT:

- AND:

- OR:

- NAND and NOR are universal
- Can implement any function with NAND or just NOR gates
- useful for manufacturing

Building Functions

- NOT:

- AND:

- NAND and NOR are universal
- Can implement any function with NAND or just NOR gates
- useful for manufacturing

Logic Equations

- AND
- out $=a b=a \& b=a \wedge b$
- OR
- out $=a+b=a \mid b=a \vee b$
- NOT
- out $=\overline{\mathrm{a}}=\quad \mathrm{a}=\neg \mathrm{a}$

Identities

- Identities useful for manipulating logic equations
- For optimization \& ease of implementation
$-a+\bar{a}=1$
$-a+0=a$
$-a+1=1$
$-\mathrm{a} \overline{\mathrm{a}}=0$
$-\mathrm{a} 0=0$
- a $1=$ a
$-\overline{a(b+c)}=\bar{a}+\bar{b} \bar{c}$
$-(\overline{a+b}) \equiv \bar{a} \bar{b}$
$-\overline{(a b)}=\bar{a}+\bar{b}$
$-a+a b=a$

Logic Manipulation

- Can specify functions by describing gates, truth tables or logic equations
- Can manipulate logic equations algebraically
- Can also use a truth table to prove equivalence
- Example: $(a+b)(a+c)=a+b c$

$$
\begin{aligned}
& (a+b)(a+c) \\
& =a a+a b+a c+b c \\
& =a+a(b+c)+b c \\
& =a(1+(b+c))+b c \\
& =a+b c
\end{aligned}
$$

a	b	c	$a+b$	$a+c$	LHS	bc	RHS
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Logic Minimization

- A common problem is how to implement a desired function most efficiently
- One can derive the equation from the truth table

a	b	c	minterm
0	0	0	$\overline{\mathrm{abc}}$
0	0	1	$\overline{\mathrm{ab}} \mathrm{c}$
0	1	0	$\overline{\mathrm{a}} \overline{\mathrm{c}}$
0	1	1	$\overline{\mathrm{a}} \mathrm{bc}$
1	0	0	abc
1	0	1	abc
1	1	0	$\mathrm{ab} \overline{\mathrm{c}}$
1	1	1	abc

for all outputs
that are 1,
take the corresponding
minterm
Obtain the result in
"sum of products" form

- How does one find the most efficient equation?
- Manipulate algebraically until satisfied
- Use Karnaugh maps (or K maps)

Multiplexer	
	- A multiplexer selects between multiple inputs $\begin{aligned} & - \text { out }=a, \text { if } d=0 \\ & - \text { out }=b, \text { if } d=1 \end{aligned}$ - Build truth table - Minimize diagram - Derive logic diagram

Multiplexer Implementation

- Build a truth table
$=a b d+a b \bar{d}+\bar{a} b d+a \bar{b} \bar{d}$
$=a \bar{d}+b d$

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer Implementation

- Draw the circuit

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- out $=a \bar{d}+b d$

Logic Gates

- One can buy gates
 separately
- ex. 74xxx series of integrated circuits
- cost $\sim \$ 1$ per chip, mostly for packaging and testing
- Cumbersome, but possible to build devices using gates put together manually

Integrated Circuits

- Or one can manufacture a complete design using a custom mask
- Intel Pentium has approximately 125 million transistors
© Kavita Bala, Computer Science, Cornell University

Voting machine

- Build something interesting
- A voting machine
- Elections are coming up!
- Assume:
- A vote is recorded on a piece of paper,
- by punching out a hole,
- there are at most 7 choices
- we will not worry about "hanging chads" or "invalids"

Voting machine

- For now, let's just display the numerical identifier to the ballot supervisor
- we won't do counting yet, just decoding
- we can use four photo-sensitive transistors to find out which hole is punched out
- A photo-sensitive transistor detects the presence of light
- Photo-sensitive material triggers the gate

Ballot Reading

Ballots
The 3410 vote recording machine

Encoders

A 3-bit encoder
(7-to-3)
(5 inputs shown)

- N sensors in a row
- Want to distinguish which of the N sensors has fired
- Want to represent the firing sensor number in compact form
- N might be large
- Only one wire is on at any time
- Silly to route N wires everywhere, better to encode in $\log \mathrm{N}$ wires

Number Representations

- Decimal numbers are written

$10^{1} 10^{0}$
in base 10
$-3 \times 10^{1}+7 \times 10^{0}=37$
- Just as easily use other bases
- Base 2 - "Binary"
- Base 8 - "Octal"
- Base 16 - "Hexadecimal"

Binary Representation

- $37=32+4+1$

0100101

$\overline{2^{6}} \overline{2^{5}} \overline{2^{4}} \overline{2^{3}} \overline{2^{2}} \overline{2^{1}} \overline{2^{0}}$
6432168421

Hexadecimal Representation

- 37 decimal $=(25)_{16}$
- Convention
- Base 16 is written with a leading $0 x$

25
$-37=0 \times 25$

- Need extra digits!
$16^{1} 16^{0}$
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Binary to hexadecimal is easy
- Divide into groups of 4, translate groupwise into hex digits

Encoder Truth Table

- Just a simple logic circuit
- Write the truth table

7-Segment Decoder Truth Table

i_{3}	i_{2}	i_{1}	i_{0}		o_{0}	o_{1}	o_{2}	o_{3}	o_{4}	o_{5}	o_{6}
0	0	0	0		1	1	1	0	1	1	1
0	0	0	1		1	0	0	0	0	0	1
0	0	1	0		1	1	0	1	1	1	0
0	0	1	1		1	1	0	1	0	1	1
0	1	0	0		1	0	1	1	0	0	1
0	1	0	1		0	1	1	1	0	1	1
0	1	1	0		0	0	1	1	1	1	1
0	1	1	1		1	1	0	0	0	0	0
1	0	0	0		1	1	1	1	1	1	1
1	0	0	1		1	1	1	1	0	1	1

Exercise: find the error(s) in this truth table

7-Segment Decoder Truth Table

i	i	i	i_{0}		o_{0}	o_{1}	o_{2}	o_{3}	o_{4}	o_{5}	o_{6}
B	2	1	0	0		1	1	1	0	1	1
0	0	0	1		1	0	0	0	0	0	1
0	0	1	0		1	1	0	1	1	1	0
0	0	1	1		1	1	0	1	0	1	1
0	1	0	0		1	0	1	1	0	0	1
0	1	0	1		0	1	1	1	0	1	1
0	1	1	0		0	0	1	1	1	1	1
0	1	1	1		1	1	0	0	0	0	1
1	0	0	0		1	1	1	1	1	1	1
1	0	0	1		1	1	1	1	0	1	1

Summary

- We can now implement any logic circuit
- Can do it efficiently, using Karnaugh maps to find the minimal terms required
- Can use either NAND or NOR gates to implement the logic circuit
- Can use P - and N -transistors to implement NAND or NOR gates

