
1

Lec 27: Synchronization II

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• Pizza party

– Tuesday Dec 2, 6:30-9:00
– Location: Upson 207

• Review: Rhodes 551, 6:30 on Wed Dec 3
• Final project out this week

– Attend sections!
– Demos: Dec 16 (Tuesday)

• Prelim 2: Dec 4 Thursday
– Hollister 110, 7:30-9:30

2

© Kavita Bala, Computer Science, Cornell University

Prelim 2 Topics
• Cumulative, but newer stuff:

– Physical and virtual memory, page tables, TLBs
– Caches, cache-conscious programming, caching

issues
– Privilege levels, syscalls, traps, interrupts, exceptions
– Busses, programmed I/O, memory-mapped I/O
– DMA, disks, RAID
– Synchronization
– Multicore processors

© Kavita Bala, Computer Science, Cornell University

• Need it to exploit multiple processing units
…to provide interactive applications
…to parallelize for multicore
…to write servers that handle many clients

• Problem: hard even for experienced
programmers
– Behavior can depend on subtle timing

differences
– Bugs may be impossible to reproduce

• Needed: synchronization of threads

Programming with threads

3

© Kavita Bala, Computer Science, Cornell University

Goals
• Concurrency poses challenges for:
• Correctness

– Threads accessing shared memory should not
interfere with each other

• Liveness
– Threads should not get stuck, should make forward

progress
• Efficiency

– Program should make good use of available
computing resources (e.g., processors).

• Fairness
– Resources apportioned fairly between threads

© Kavita Bala, Computer Science, Cornell University

Two threads, one counter
Example: Web servers use concurrency
• Multiple threads handle client requests in

parallel.
• Some shared state, e.g. hit counts:

– each thread increments a shared counter to track
number of hits

• What happens when two threads execute
concurrently?

…
hits = hits + 1;
…

…
lw r0, hitsloc
addu r0, r0, 1
sw r0, hitsloc
…

4

© Kavita Bala, Computer Science, Cornell University

Shared counters

• Possible result: lost update!

• Timing-dependent failure ⇒ race condition
– hard to reproduce ⇒ Difficult to debug

addu/sw: hits = 0 + 1

lw (0)

addu/sw: hits = 0 + 1
lw (0)

T1 T2

hits = 1

hits = 0
time

© Kavita Bala, Computer Science, Cornell University

Race conditions
• Def: timing-dependent error involving access to

shared state
– Whether it happens depends on how threads

scheduled: who wins “races” to instruction that
updates state vs. instruction that accesses state

– Races are intermittent, may occur rarely
Timing dependent = small changes can hide bug

– A program is correct only if all possible schedules are
safe

Number of possible schedule permutations is huge
Need to imagine an adversary who switches contexts at the
worst possible time

5

© Kavita Bala, Computer Science, Cornell University

Critical sections
• To eliminate races: use critical sections

that only one thread can be in
– Contending threads must wait to enter

CSEnter();
Critical section

CSExit();

T1 T2time

CSEnter();
Critical section

CSExit();

T1 T2

© Kavita Bala, Computer Science, Cornell University

Mutexes
• Critical sections typically associated with mutual

exclusion locks (mutexes)
• Only one thread can hold a given mutex at a

time
• Acquire (lock) mutex on entry to critical section

– Or block if another thread already holds it
• Release (unlock) mutex on exit

– Allow one waiting thread (if any) to acquire & proceed

pthread_mutex_lock(m);
hits = hits+1;

pthread_mutex_unlock(m);

T1 T2

pthread_mutex_lock(m);
hits = hits+1;

pthread_mutex_unlock(m);

pthread_mutex_init(m);

6

© Kavita Bala, Computer Science, Cornell University

Using atomic hardware primitives

Mutex init: lock = false;

test_and_set uses a special
hardware instruction that sets the
lock and returns the OLD value
(true: locked; false: unlocked)

- Alternative instruction: compare
& swap, load linked/store
conditional
-

• Mutex implementations usually rely on special hardware
instructions that atomically do a read and a write.

• Requires special memory system support on
multiprocessors

while (test_and_set(&lock));

lock = false;

Critical Section

© Kavita Bala, Computer Science, Cornell University

Test-and-set
boolean test_and_set (boolean *lock) {

boolean old = *lock;
*lock = true;
return old;

}

…but guaranteed to act as if no other thread is interleaved

Used to implement pthread_mutex_lock()

7

© Kavita Bala, Computer Science, Cornell University

Using test-and-set for mutual exclusion
boolean lock = false;

while test_and_set(&lock) skip
//spin until lock is acquired.

… do critical section …
//only one process can be in this section at a time

lock = false ;
// release lock when finished with the
// critical section

boolean test_and_set (boolean *lock) {
boolean old = *lock;
*lock = true;
return old;

}

© Kavita Bala, Computer Science, Cornell University

Spin waiting

• Example is a spinlock
– Also: busy waiting or spin waiting
– Efficient if wait is short
– Wasteful if wait is long

• Heuristic:
– spin for time proportional to expected wait

time
– If time runs out, context-switch to some other

thread

8

© Kavita Bala, Computer Science, Cornell University

Mutexes protect invariants
• Shared data must be guarded by

synchronization to enforce any invariant
Example: shared queue

first

// invariant: data is in buffer[first..last-1]
char buffer[1000];
int first = 0, last = 0;
void put(char c) { // writer

buffer[last] = c;
last++;

}
char get() { // reader

while (first == last);
char c = buffer[first];
first++;

}

last

invariant temporarily broken!

buffer

© Kavita Bala, Computer Science, Cornell University

Protecting an invariant
// invariant: data is in buffer[first..last-1]. Protected by m.
pthread_mutex_t *m = pthread_mutex_create ();
char buffer[1000];
int first = 0, last = 0;

void put(char c) {
pthread_mutex_lock(m);
buffer[last] = c;
last++;
pthread_mutex_unlock(m);

}

• Rule of thumb: all updates that can affect
invariant become critical sections

char get() {
pthread_mutex_lock(m);
char c = buffer[first];
first++;
pthread_mutex_unlock(m);

}

X what if first==last?

9

© Kavita Bala, Computer Science, Cornell University

Guidelines for successful mutexing
• Adding mutexes in wrong place can cause

deadlock
T1: pthread_lock(m1); pthread_lock(m2);
T2: pthread_lock(m2); pthread_lock(m1);
– know why you are using mutexes!
– acquire locks in a consistent order to avoid cycles
– match lock/unlock lexically in program text to ensure

locks/unlocks match up
pthread_mutex_t m = …; lock(&m); …; unlock(&m)
watch out for exception/error conditions!

• Shared data should be protected by mutexes
– Can we cheat on using mutexes? Just say no…

© Kavita Bala, Computer Science, Cornell University

Remember: Cache Coherence
• Formally:

– P writes X; P reads X (no intervening writes)
⇒ read returns written value

– P1 writes X; P2 reads X (sufficiently later)
⇒ read returns written value

CPU B reading X after step 3 in example
– P1 writes X, P2 writes X
⇒ all processors see writes in the same order

End up with the same final value for X
Sequential consistency

• MIPS, but not Intel

10

© Kavita Bala, Computer Science, Cornell University

Relaxed consistency implications
• Nice mental model: sequential consistency

– Memory operations happen in a way consistent with
interleaved operations of each processor

– Other processors’ updates show up in program order
– Generally thought to be expensive

• But might not be supported. Modern
multiprocessors may see inconsistent views of
memory in their caches
– P1: x=1; y=2; f = true;
– P2: while (!f) { }; print(x); print(y);
– Could print 12, 00, 10, 02 !

P1

P2

C1

C2
Mx y f

x y f

x y f

© Kavita Bala, Computer Science, Cornell University

Acquire/release
• Modern synchronization libraries ensure memory

updates are seen by using hardware support:
– Acquire: forces subsequent accesses after
– Release: forces previous accesses before

– P1: … ; release; …
– P2: … ; acquire; …

• And there is a full spectrum: processor
consistency

• Moral: use synchronization, don’t rely on
sequential consistency

See all … effects here
See no … effects here

release consistency,

not sequential consistency

11

© Kavita Bala, Computer Science, Cornell University

Beyond mutexes
• Sometimes need to share resources in

non-exclusive way
• Example: shared queue (multiple readers,

multiple writers)
• How to let a reader wait for data without

blocking a mutex?
char get() {

while (first == last);
char c = buffer[first];
first++;

}

X

© Kavita Bala, Computer Science, Cornell University

Example: buffer
• Invariant: active cells start at first, end at n

1 2 3

first last
first

last=first

1 2 3 4

last == n
last

empty

full

12

© Kavita Bala, Computer Science, Cornell University

char get() {
boolean done=false;
while (!done) {

lock(m);
if (first != last) {

char c = buffer[first];
first = (first+1);
done = true;

}
unlock(m);

}
}
Oops! Reader still spins on empty queu

A first broken cut
// invariant: data is in buffer[first..last-1].
mutex_t *m = …;
char buffer[n];
int first = 0, last = 0;

void put(char c) {
lock(m);
buffer[last] = c;
last = (last+1);
unlock(m);

}

char get() {
lock(m);
while (first == last);
char c = buffer[first];
first = (first+1);
unlock(m);

}

Oops! Blocks all writers if empty

char get() {
while (first == last);
lock(m);
char c = buffer[first];
first = (first+1);
unlock(m);

}
Oops! Two readers can still race

Same issues
here for full queue

1 2 3

first last

© Kavita Bala, Computer Science, Cornell University

Example: ring buffer
• A useful data structure for IPC
• Invariant: active cells start at first, end at last-1,

last never incremented up to first

1 2 3

first last

4 5 1 2

last

3

first

first
last=first

5 6 1 2 3 4

first=(last+1)%n
last

empty

full

13

© Kavita Bala, Computer Science, Cornell University

char get() {
boolean done=false;
while (!done) {

lock(m);
if (first != last) {

char c = buffer[first];
first = (first+1)%n;
done = true;

}
unlock(m);

}
}
Oops! Reader still spins on empty queu

A first broken cut
// invariant: data is in buffer[first..last-1].
mutex_t *m;
char buffer[n];
int first = 0, last = 0;

void put(char c) {
lock(m);
buffer[last] = c;
last = (last+1)%n;
unlock(m);

}

char get() {
lock(m);
while (first == last);
char c = buffer[first];
first = (first+1)%n;
unlock(m);

}

Oops! Blocks all writers if empty

char get() {
while (first == last);
lock(m);
char c = buffer[first];
first = (first+1)%n;
unlock(m);

}
Oops! Two readers can still race

Same issues
here for full queue

1 2 3

first last

© Kavita Bala, Computer Science, Cornell University

Condition variables
• To let thread wait (not holding the mutex!) until a

condition is true, use a condition variable [Hoare]

• wait(m, c) : atomically release m and go to sleep
waiting for condition c, wake up holding m
– Must be atomic to avoid wake-up-waiting race

• signal(c) : wake up one thread waiting on c
• broadcast(c) : wake up all threads waiting on c

• POSIX (e.g., Linux): pthread_cond_wait,
pthread_cond_signal,
pthread_cond_broadcast

14

© Kavita Bala, Computer Science, Cornell University

Using a condition variable
• wait(m, c) : release m, sleep waiting for c, wake up holding m
• signal(c) : wake up one thread waiting on c

mutex_t *m;
cond_t *not_empty, *not_full;
char get() {

lock(m);
while (first == last)

wait(m, not_empty);
char c = buffer[first];
first = (first+1)%n;
unlock(m);
signal(not_full);

}

char put(char c) {
lock(m);
while ((first-last)%n == 1)

wait(m, not_full);
buffer[last] = c;
last = (last+1)%n;
unlock(m);
signal(not_empty);

}

© Kavita Bala, Computer Science, Cornell University

Monitors
• A monitor is a shared concurrency-safe

data structure
• Has one mutex
• Has some number of condition variables
• Operations acquire mutex so only one

thread can be in the monitor at a time

• Our ring buffer implementation is a monitor
• Some languages (e.g. Java, C#) provide

explicit support for monitors

15

© Kavita Bala, Computer Science, Cornell University

Java concurrency
• Java object is a simple monitor

– Acts as a mutex via synchronized { S } statement and
synchronized methods

– Has one (!) builtin condition variable tied to the mutex
o.wait() = wait(o, o)
o.notify() = signal(o)
o.notifyAll() = broadcast(o)
synchronized(o) {S} = lock(o); S; unlock(o)

– Java wait() can be called even when mutex is not
held. Mutex not held when awoken by signal().
Useful?

© Kavita Bala, Computer Science, Cornell University

More synchronization mechanisms
Implementable with mutexes and condition

variables:
• Reader/writer locks

– Any number of threads can hold a read lock
– Only one thread can hold the writer lock

• Semaphores
– Some number n of threads are allowed to hold

the lock
– n=1 => semaphore = mutex

• Message-passing, sockets
– send()/recv() transfer data and synchronize

