
1

Lec 26: Parallel Processing

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• Pizza party

– Tuesday Dec 2, 6:30-9:00
– Location: TBA

• Final project (parallel ray tracer) out next
week
– Demos: Dec 16 (Tuesday)

• Prelim 2: Dec 4 Thursday
– Hollister 110, 7:30-9:00/9:30

2

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Task: serial part, parallel part
• As number of processors increases,

– time to execute parallel part goes to zero
– time to execute serial part remains the same

• Serial part eventually dominates
• Must parallelize ALL parts of task

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Consider an improvement E
• F of the execution time is affected
• S is the speedup

3

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Sequential part can limit speedup
• Example: 100 processors, 90× speedup?

– Tnew = Tparallelizable/100 + Tsequential

–

– Solving: Fparallelizable = 0.999
• Need sequential part to be 0.1% of original

time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=

© Kavita Bala, Computer Science, Cornell University

4

© Kavita Bala, Computer Science, Cornell University

Shared Memory
• SMP: shared memory multiprocessor

– Hardware provides single physical
address space for all processors

– Synchronize shared variables using locks

© Kavita Bala, Computer Science, Cornell University

Cache Coherence Problem
• Suppose two CPU cores share a physical

address space
– Write-through caches

101CPU A writes 1 to X3

000CPU B reads X2

00CPU A reads X1

00

MemoryCPU B’s
cache

CPU A’s
cache

EventTime
step

5

© Kavita Bala, Computer Science, Cornell University

Coherence Defined
• Informally: Reads return most recently

written value
• Formally:

– P writes X; P reads X (no intervening writes)
⇒ read returns written value

– P1 writes X; P2 reads X (sufficiently later)
⇒ read returns written value

CPU B reading X after step 3 in example
– P1 writes X, P2 writes X
⇒ all processors see writes in the same order

End up with the same final value for X
Sequential consistency

© Kavita Bala, Computer Science, Cornell University

Cache Coherence Protocols
• Operations performed by caches in

multiprocessors to ensure coherence
– Migration of data to local caches

Reduces bandwidth for shared memory
– Replication of read-shared data

Reduces contention for access

• Snooping protocols
– Each cache monitors bus reads/writes

6

© Kavita Bala, Computer Science, Cornell University

Snooping Caches

• Read: respond if you have data
• Write: invalidate or update your data

© Kavita Bala, Computer Science, Cornell University

Invalidating Snooping Protocols
• Cache gets exclusive access to a block

when it is to be written
– Broadcasts an invalidate message on the bus
– Subsequent read in another cache misses

Owning cache supplies updated value

111Cache miss for XCPU B read X
01Invalidate for XCPU A writes 1 to X
000Cache miss for XCPU B reads X
00Cache miss for XCPU A reads X
0

MemoryCPU B’s
cache

CPU A’s
cache

Bus activityCPU activity

7

© Kavita Bala, Computer Science, Cornell University

Writing
• Write-back policies for bandwidth
• Write-invalidate coherence policy

– First invalidate all other copies of data
– Then write it in cache line
– Anybody else can read it

• Permits one writer, multiple readers

• In reality: many coherence protocols
– Snooping doesn’t scale
– Directory-based protocols

Caches and memory record sharing status of blocks in a
directory

© Kavita Bala, Computer Science, Cornell University

8

Parallel Programming and
Synchronization

© Kavita Bala, Computer Science, Cornell University

Processes

• Hundreds of things going on in the system: how to manage?

• How to make things simple?
– Decompose computation into separate processes

• How to make things reliable?
– Isolate processes from each other to protect from each others’ faults

• How to speed up?
– Overlap I/O bursts of one process with CPU bursts of another

gccemacsnfsd

lprlswww

emacsnfsd
lprls

www
OS

OS

9

© Kavita Bala, Computer Science, Cornell University

What is a process?
• A program being executed

– Sequential, one instruction at a time
• Process is an OS abstraction

– a thread of execution running in a restricted virtual
environment – a virtual CPU and virtual memory
environment, interfacing with the OS via system calls

– The unit of execution
– The unit of scheduling
– Thread of execution + address space

The same as “job” or “task” or “sequential process”.
Closely related to “thread”

© Kavita Bala, Computer Science, Cornell University

Process != Program

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Code

Initialized data

BSS

Heap

Stack

DLL’s

mapped segments

Executable

Process
address space

Program is passive
• Code + static data

Process is running program
• stack, registers, heap, pc

Example:
We both run IE on one machine
- same program
- separate processes
- same virtual address space
- different physical memory

10

© Kavita Bala, Computer Science, Cornell University

Context Switch
• Context Switch

− Process of switching CPU from one process to
another

• State of a running process must be saved and
restored:
– Program Counter, Stack Pointer, General Purpose

Registers
• Suspending a process: OS saves state

– Saves register values
• To execute another process, the OS restores

state
– Loads register values

© Kavita Bala, Computer Science, Cornell University

Details of Context Switching
− Context switching code is architecture-dependent

− Depends on registers

• Very tricky to implement
– OS must save state without changing state
– Must run without changing any user program registers

CISC: single instruction saves all state
RISC: reserve registers for kernel

• Overheads: CPU is idle during a context switch
– Explicit:

direct cost of loading/storing registers to/from main memory
– Implicit:

Opportunity cost of flushing useful caches (cache, TLB, etc.)
Waiting for pipeline to drain in pipelined processors

11

© Kavita Bala, Computer Science, Cornell University

How to create a process?

• Double click on a icon?
• After boot OS starts the first process

– E.g., init

• The first process creates other processes:
– the creator is called the parent process
– the created is called the child process
– the parent/child relationships creates a process tree

© Kavita Bala, Computer Science, Cornell University

Processes Under UNIX
• New child process is created by the fork()

system call:
int fork()

– creates a new address space
– copies the parent’s address space into the child’s

uses copy-on-write to avoid copying memory that is only read

– starts a new thread of control in the child’s address
space

– parent and child are almost identical
in parent, fork() returns a non-zero integer
in child, fork() returns a zero.
difference allows parent and child to distinguish themselves

– int fork() returns TWICE!

12

© Kavita Bala, Computer Science, Cornell University

Example

main(int argc, char **argv)
{

char *myName = argv[1];
int cpid = fork();
if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());
exit(0);

} else {
printf(“My child is %d\n”, cpid);
exit(0);

}
}

What does this program print?

© Kavita Bala, Computer Science, Cornell University

Bizarre But Real

lace:tmp<15> cc a.c
lace:tmp<16> ./a.out foobar
The child of foobar is 23874
My child is 23874

Parent

Child

Operating
System

fork()

retsys

v0=0v0=23874

13

© Kavita Bala, Computer Science, Cornell University

Cooperating Processes
• Processes can be independent or can work

cooperatively
• Cooperating processes can be used for:

– speedup by spreading computation over multiple
processors/cores

– speedup and improving interactivity: one process can
work while others are stopped waiting for I/O.

– better structuring of an application into separate
concerns

E.g., a pipeline of processes processing data

• But: cooperating processes need ways to
– Communicate information
– Coordinate (synchronize) activities

© Kavita Bala, Computer Science, Cornell University

Shared memory
• By default processes have disjoint physical memory --

complete isolation prevents communication

• Processes can set up a segment of memory as shared
with other process(es)
– Typically part of the memory of the process creating the shared

memory. Other processes attach this to their memory space.

• Allows high-bandwidth communication between
processes by just writing into memory

14

© Kavita Bala, Computer Science, Cornell University

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(int argc, char **argv) {
char* shared_memory;
const int size = 4096;
int segment_id = shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR);
int cpid = fork();
if (cpid == 0) {

shared_memory = (char*) shmat(segment_id, NULL, 0);
sprintf(shared_memory, "Hi from process %d",getpid());

} else {
shared_memory = (char*) shmat(segment_id, NULL, 0);
wait(NULL);
printf("Process %d read: %s\n", getpid(), shared_memory);
shmdt(shared_memory);
shmctl(segment_id, IPC_RMID, NULL);

}
}

Example

© Kavita Bala, Computer Science, Cornell University

Processes are heavyweight
• Parallel programming with processes:

– They share almost everything
– They all share the same code and any data in shared memory

(process isolation is not useful)
– They all share the same privileges

• What don’t they share?
– Each has its own PC, registers, and stack

• Idea: why don’t we separate the idea of process
(address space, accounting, etc.) from that of the
minimal “thread of control” (PC, SP, registers)?

15

© Kavita Bala, Computer Science, Cornell University

Threads vs. processes
• Most operating systems therefore support two entities:

– the process,
which defines the address space and general process attributes

– the thread,
which defines a sequential execution stream within a process

• A thread is bound to a single process.
– For each process, however, there may be many threads.

• Threads are the unit of scheduling
• Processes are containers in which threads execute

© Kavita Bala, Computer Science, Cornell University

Multithreaded Processes

16

© Kavita Bala, Computer Science, Cornell University

Threads
#include <pthread.h>
int hits = 0;

void *PrintHello(void *threadid) {
int tid; tid = (int)threadid;
printf("Hello World! It's me, thread #%d! hits %d\n",
tid, ++hits);
pthread_exit(NULL);

}
int main (int argc, char *argv[]) {
pthread_t threads[5];
int t;
for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %d\n", t);
pthread_create(&threads[t],NULL,PrintHello,(void *)t);
}
pthread_exit(NULL);

}

© Kavita Bala, Computer Science, Cornell University

• If processes….

• If threads….

17

© Kavita Bala, Computer Science, Cornell University

• Need it to exploit multiple processing units
…to provide interactive applications
…to write servers that handle many clients

• Problem: hard even for experienced
programmers
– Behavior can depend on subtle timing

differences
– Bugs may be impossible to reproduce

• Needed: synchronization
of threads

Programming with threads

© Kavita Bala, Computer Science, Cornell University

Goals
• Concurrency poses challenges for:
• Correctness

– Threads accessing shared memory should not
interfere with each other

• Liveness
– Threads should not get stuck, should make forward

progress
• Efficiency

– Program should make good use of available
computing resources (e.g., processors).

• Fairness
– Resources apportioned fairly between threads

18

© Kavita Bala, Computer Science, Cornell University

Two threads, one counter
Web servers use concurrency:
• Multiple threads handle client requests in

parallel.
• Some shared state, e.g. hit counts:

– each thread increments a shared counter to track
number of hits

• What happens when two threads execute
concurrently?

…
hits = hits + 1;
…

© Kavita Bala, Computer Science, Cornell University

Shared counters

• Possible result: lost update!

• Timing-dependent failure ⇒ race condition
– hard to reproduce ⇒ Difficult to debug

hits = 0 + 1

read hits (0)

hits = 0 + 1
read hits (0)

T1 T2

hits = 1

hits = 0
time

19

© Kavita Bala, Computer Science, Cornell University

Race conditions
• Def: timing-dependent error involving access to

shared state
– Whether it happens depends on how threads

scheduled: who wins “races” to instruction that
updates state vs. instruction that accesses state

– Races are intermittent, may occur rarely
Timing dependent = small changes can hide bug

– A program is correct only if all possible schedules are
safe

Number of possible schedule permutations is huge
Need to imagine an adversary who switches contexts at the
worst possible time

© Kavita Bala, Computer Science, Cornell University

Critical sections
• To eliminate races: use critical sections

that only one thread can be in
– Contending threads must wait to enter

CSEnter();
Critical section

CSExit();

T1 T2time

CSEnter();
Critical section

CSExit();

T1 T2

20

© Kavita Bala, Computer Science, Cornell University

Mutexes
• Critical sections typically associated with mutual

exclusion locks (mutexes)
• Only one thread can hold a given mutex at a

time
• Acquire (lock) mutex on entry to critical section

– Or block if another thread already holds it
• Release (unlock) mutex on exit

– Allow one waiting thread (if any) to acquire & proceed

pthread_mutex_lock(m);
hits = hits+1;

pthread_mutex_unlock(m);

T1 T2

pthread_mutex_lock(m);
hits = hits+1;

pthread_mutex_unlock(m);

pthread_mutex_init(m);

© Kavita Bala, Computer Science, Cornell University

Using atomic hardware primitives

Mutex init: lock = false;

test_and_set uses a special
hardware instruction that sets the
lock and returns the OLD value
(true: locked; false: unlocked)

- Alternative instruction: compare
& swap, load linked/store
conditional
- on multiprocessor/multicore:
expensive, needs hardware
support

• Mutex implementations usually rely on special hardware
instructions that atomically do a read and a write.

• Requires special memory system support on
multiprocessors

while (test_and_set(&lock));

lock = false;

Critical Section

21

© Kavita Bala, Computer Science, Cornell University

Happy Thanksgiving!

