
1

Lec 25: Parallel Processors

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• PA 3 out
– Hack ‘n Seek

The goal is to have fun with it
Recitations today will talk about it

• Pizza party: Dec 2
• Final project (distributed ray tracer) out last

week
– Demos: Dec 16 and 17

2

© Kavita Bala, Computer Science, Cornell University

Moore’s Law

• Law about transistor count

© Kavita Bala, Computer Science, Cornell University

Parallel Processing

• Been around for long time in different
forms

• Instruction Level Parallelism
• Data Parallelism
• Etc.

3

© Kavita Bala, Computer Science, Cornell University

Instruction-Level Parallelism (ILP)

• Pipelining: executing multiple instructions in
parallel

• To increase ILP
– Deeper pipeline

Less work per stage ⇒ shorter clock cycle
– Multiple issue

Replicate pipeline stages ⇒ multiple pipelines
Start multiple instructions per clock cycle
CPI < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4
But dependencies reduce this in practice

© Kavita Bala, Computer Science, Cornell University

Multiple Issue
• Static multiple issue

– Compiler groups instructions to be issued together
– Packages them into “issue slots”
– Specifies multiple concurrent operations
– ⇒ Very Long Instruction Word (VLIW)
– Compiler detects and avoids hazards

• Dynamic multiple issue
– CPU examines instruction stream and chooses

instructions to issue each cycle
– Compiler can help by reordering instructions
– CPU resolves hazards using advanced techniques at

runtime

4

© Kavita Bala, Computer Science, Cornell University

Speculation
• “Guess” what to do with an instruction

– Start operation as soon as possible
– Check whether guess was right

If so, complete the operation
If not, roll-back and do the right thing

• Common to static and dynamic multiple issue
• Examples

– Speculate on branch outcome
Roll back if path taken is different

– Speculate on load
Roll back if location is updated

© Kavita Bala, Computer Science, Cornell University

Compiler/Hardware Speculation

• Compiler can reorder instructions
– e.g., move load before branch
– Can include “fix-up” instructions to recover

from incorrect guess
• Hardware can look ahead for instructions

to execute
– Buffer results until it determines they are

actually needed
– Flush buffers on incorrect speculation

5

© Kavita Bala, Computer Science, Cornell University

Issues

• Hazards

• Exceptions

© Kavita Bala, Computer Science, Cornell University

MIPS with Static Dual Issue
• Two-issue packets

– One ALU/branch instruction
– One load/store instruction
– 64-bit aligned

ALU/branch, then load/store
Pad an unused instruction with nop

n + 20

n + 16

n + 12

n + 8

n + 4

n

Address

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

Pipeline StagesInstruction type

6

© Kavita Bala, Computer Science, Cornell University

Scheduling Example
• Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

4sw $t0, 4($s1)bne $s1, $zero, Loop

3nopaddu $t0, $t0, $s2

2nopaddi $s1, $s1,–4

1lw $t0, 0($s1)nopLoop:

cycleLoad/storeALU/branch

– IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

© Kavita Bala, Computer Science, Cornell University

Dynamic Multiple Issue
• “Superscalar” processors
• CPU decides whether to issue 0, 1, 2, …

each cycle
– Avoiding structural and data hazards

• Avoids the need for compiler scheduling
– Though it may still help
– Code semantics ensured by the CPU

7

© Kavita Bala, Computer Science, Cornell University

Dynamic Multiple Issue

© Kavita Bala, Computer Science, Cornell University

Dynamic Pipeline Scheduling
• Allow the CPU to execute instructions out

of order to avoid stalls
– But commit result to registers in order

• Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

– Can start sub while addu is waiting for lw

8

© Kavita Bala, Computer Science, Cornell University

Why Do Dynamic Scheduling?
• Why not just let the compiler schedule

code?
• Not all stalls are predicable

– e.g., cache misses
• Can’t always schedule around branches

– Branch outcome is dynamically determined
• Different implementations of an ISA have

different latencies and hazards

© Kavita Bala, Computer Science, Cornell University

Does Multiple Issue Work?
• Yes, kind of

– But not as much as we’d like
• Programs have real dependencies that limit ILP
• Some dependencies are hard to eliminate

– e.g., pointer aliasing
• Some parallelism is hard to expose

– Limited window size during instruction issue
• Memory delays and limited bandwidth

– Hard to keep pipelines full
• Speculation can help if done well

9

© Kavita Bala, Computer Science, Cornell University

Power Efficiency
• Complexity of dynamic scheduling and

speculations requires power
• Multiple simpler cores may be better

70W8No161200MHz2005UltraSparc T1

90W1No4141950MHz2003UltraSparc III

75W2Yes4142930MHz2006Core

103W1Yes3313600MHz2004P4 Prescott

75W1Yes3222000MHz2001P4 Willamette

29W1Yes310200MHz1997Pentium Pro

10W1No2566MHz1993Pentium

5W1No1525MHz1989i486

PowerCoresOut-of-order/
Speculation

Issue
width

Pipeline
Stages

Clock RateYearMicroprocessor

© Kavita Bala, Computer Science, Cornell University

Why Multicore?
• Moore’s law

– A law about transistors
– Smaller means faster transistors

• Power consumption growing with transistors

• The power wall
– We can’t reduce voltage further
– We can’t remove more heat

• How else can we improve performance?

10

© Kavita Bala, Computer Science, Cornell University

Inside the Processor
• AMD Barcelona: 4 processor cores

© Kavita Bala, Computer Science, Cornell University

11

© Kavita Bala, Computer Science, Cornell University

Uniprocessor Performance

Constrained by power, instruction-level parallelism,
memory latency

© Kavita Bala, Computer Science, Cornell University

Inside the Processor
• AMD Barcelona: 4 processor cores

12

© Kavita Bala, Computer Science, Cornell University

Intel’s argument

© Kavita Bala, Computer Science, Cornell University

1.2x

1.6x

13

© Kavita Bala, Computer Science, Cornell University

Parallel Programming
• Parallel software is the problem
• Need to get significant performance

improvement
– Otherwise, just use a faster uniprocessor,

since it’s easier!
• Difficulties

– Partitioning
– Coordination
– Communications overhead
– Balance load

© Kavita Bala, Computer Science, Cornell University

Load Balancing
• Need to manage work

so all units are actually
operating

14

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Task: serial part, parallel part
• As number of processors increases,

– time to execute parallel part goes to zero
– time to execute serial part remains the same

• Serial part eventually dominates
• Must parallelize ALL parts of task

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Consider an improvement E
• F of the execution time is affected
• S is the speedup

15

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law

© Kavita Bala, Computer Science, Cornell University

Pitfall: Amdahl’s Law
• Improving an aspect of a computer and

expecting a proportional improvement in
overall performance

208020 +=
n

– Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

• Example: multiply accounts for 80s/100s
– How much improvement in multiply performance to

get 5× overall?

16

© Kavita Bala, Computer Science, Cornell University

Amdahl’s Law
• Sequential part can limit speedup
• Example: 100 processors, 90× speedup?

– Tnew = Tparallelizable/100 + Tsequential

–

– Solving: Fparallelizable = 0.999
• Need sequential part to be 0.1% of original

time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=

© Kavita Bala, Computer Science, Cornell University

Scaling Example
• Workload: sum of 10 scalars, and 10 × 10 matrix

sum
– Speed up from 10 to 100 processors

• Single processor: Time = (10 + 100) × tadd
• 10 processors

– Time = 10 × tadd + 100/10 × tadd = 20 × tadd
– Speedup = 110/20 = 5.5 (55% of potential)

• 100 processors
– Time = 10 × tadd + 100/100 × tadd = 11 × tadd
– Speedup = 110/11 = 10 (10% of potential)

• Assumes load can be balanced across
processors

17

© Kavita Bala, Computer Science, Cornell University

Scaling Example (cont)
• What if matrix size is 100 × 100?
• Single processor: Time = (10 + 10000) × tadd

• 10 processors
– Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

– Speedup = 10010/1010 = 9.9 (99% of potential)
• 100 processors

– Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

– Speedup = 10010/110 = 91 (91% of potential)
• Assuming load balanced

