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Announcements

• PA 3 out
– Hack ‘n Seek

The goal is to have fun with it
Recitations today will talk about it

• Pizza party: Dec 2
• Final project (distributed ray tracer) out last 

week
– Demos: Dec 16 and 17
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Moore’s Law

• Law about transistor count
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Parallel Processing

• Been around for long time in different 
forms

• Instruction Level Parallelism
• Data Parallelism
• Etc.
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Instruction-Level Parallelism (ILP)

• Pipelining: executing multiple instructions in 
parallel

• To increase ILP
– Deeper pipeline

Less work per stage ⇒ shorter clock cycle
– Multiple issue

Replicate pipeline stages ⇒ multiple pipelines
Start multiple instructions per clock cycle
CPI < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4
But dependencies reduce this in practice
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Multiple Issue
• Static multiple issue

– Compiler groups instructions to be issued together
– Packages them into “issue slots”
– Specifies multiple concurrent operations
– ⇒ Very Long Instruction Word (VLIW)
– Compiler detects and avoids hazards

• Dynamic multiple issue
– CPU examines instruction stream and chooses 

instructions to issue each cycle
– Compiler can help by reordering instructions
– CPU resolves hazards using advanced techniques at 

runtime



4

© Kavita Bala, Computer Science, Cornell University

Speculation
• “Guess” what to do with an instruction

– Start operation as soon as possible
– Check whether guess was right

If so, complete the operation
If not, roll-back and do the right thing

• Common to static and dynamic multiple issue
• Examples

– Speculate on branch outcome
Roll back if path taken is different

– Speculate on load
Roll back if location is updated
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Compiler/Hardware Speculation

• Compiler can reorder instructions
– e.g., move load before branch
– Can include “fix-up” instructions to recover 

from incorrect guess
• Hardware can look ahead for instructions 

to execute
– Buffer results until it determines they are 

actually needed
– Flush buffers on incorrect speculation
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Issues

• Hazards

• Exceptions
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MIPS with Static Dual Issue
• Two-issue packets

– One ALU/branch instruction
– One load/store instruction
– 64-bit aligned

ALU/branch, then load/store
Pad an unused instruction with nop

n + 20

n + 16

n + 12

n + 8

n + 4

n

Address

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

WBMEMEXIDIFLoad/store

WBMEMEXIDIFALU/branch

Pipeline StagesInstruction type
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Scheduling Example
• Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1)      # $t0=array element
addu $t0, $t0, $s2    # add scalar in $s2
sw $t0, 0($s1)      # store result
addi $s1, $s1,–4      # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

4sw $t0, 4($s1)bne $s1, $zero, Loop

3nopaddu $t0, $t0, $s2

2nopaddi $s1, $s1,–4

1lw $t0, 0($s1)nopLoop:

cycleLoad/storeALU/branch

– IPC = 5/4 = 1.25 (c.f. peak IPC = 2)
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Dynamic Multiple Issue
• “Superscalar” processors
• CPU decides whether to issue 0, 1, 2, …

each cycle
– Avoiding structural and data hazards

• Avoids the need for compiler scheduling
– Though it may still help
– Code semantics ensured by the CPU
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Dynamic Multiple Issue
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Dynamic Pipeline Scheduling
• Allow the CPU to execute instructions out 

of order to avoid stalls
– But commit result to registers in order

• Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

– Can start sub while addu is waiting for lw
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Why Do Dynamic Scheduling?
• Why not just let the compiler schedule 

code?
• Not all stalls are predicable

– e.g., cache misses
• Can’t always schedule around branches

– Branch outcome is dynamically determined
• Different implementations of an ISA have 

different latencies and hazards
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Does Multiple Issue Work?
• Yes, kind of

– But not as much as we’d like
• Programs have real dependencies that limit ILP
• Some dependencies are hard to eliminate

– e.g., pointer aliasing
• Some parallelism is hard to expose

– Limited window size during instruction issue
• Memory delays and limited bandwidth

– Hard to keep pipelines full
• Speculation can help if done well
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Power Efficiency
• Complexity of dynamic scheduling and 

speculations requires power
• Multiple simpler cores may be better

70W8No161200MHz2005UltraSparc T1

90W1No4141950MHz2003UltraSparc III

75W2Yes4142930MHz2006Core

103W1Yes3313600MHz2004P4 Prescott

75W1Yes3222000MHz2001P4 Willamette

29W1Yes310200MHz1997Pentium Pro

10W1No2566MHz1993Pentium

5W1No1525MHz1989i486

PowerCoresOut-of-order/ 
Speculation

Issue 
width

Pipeline 
Stages

Clock RateYearMicroprocessor
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Why Multicore?
• Moore’s law

– A law about transistors
– Smaller means faster transistors

• Power consumption growing with transistors

• The power wall
– We can’t reduce voltage further
– We can’t remove more heat

• How else can we improve performance?
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Inside the Processor
• AMD Barcelona: 4 processor cores
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Uniprocessor Performance

Constrained by power, instruction-level parallelism, 
memory latency
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Inside the Processor
• AMD Barcelona: 4 processor cores
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Intel’s argument
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1.2x

1.6x
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Parallel Programming
• Parallel software is the problem
• Need to get significant performance 

improvement
– Otherwise, just use a faster uniprocessor, 

since it’s easier!
• Difficulties

– Partitioning
– Coordination
– Communications overhead
– Balance load
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Load Balancing
• Need to manage work 

so all units are actually 
operating
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Amdahl’s Law
• Task: serial part, parallel part
• As number of processors increases, 

– time to execute parallel part goes to zero
– time to execute serial part remains the same

• Serial part eventually dominates
• Must parallelize ALL parts of task
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Amdahl’s Law
• Consider an improvement E
• F of the execution time is affected
• S is the speedup
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Amdahl’s Law
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Pitfall: Amdahl’s Law
• Improving an aspect of a computer and 

expecting a proportional improvement in 
overall performance

208020 +=
n

– Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

• Example: multiply accounts for 80s/100s
– How much improvement in multiply performance to 

get 5× overall?
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Amdahl’s Law
• Sequential part can limit speedup
• Example: 100 processors, 90× speedup?

– Tnew = Tparallelizable/100 + Tsequential

–

– Solving: Fparallelizable = 0.999
• Need sequential part to be 0.1% of original 

time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=
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Scaling Example
• Workload: sum of 10 scalars, and 10 × 10 matrix 

sum
– Speed up from 10 to 100 processors

• Single processor: Time = (10 + 100) × tadd
• 10 processors

– Time = 10 × tadd + 100/10 × tadd = 20 × tadd
– Speedup = 110/20 = 5.5 (55% of potential)

• 100 processors
– Time = 10 × tadd + 100/100 × tadd = 11 × tadd
– Speedup = 110/11 = 10 (10% of potential)

• Assumes load can be balanced across 
processors
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Scaling Example (cont)
• What if matrix size is 100 × 100?
• Single processor: Time = (10 + 10000) × tadd

• 10 processors
– Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

– Speedup = 10010/1010 = 9.9 (99% of potential)
• 100 processors

– Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

– Speedup = 10010/110 = 91 (91% of potential)
• Assuming load balanced


