Lec 24: Parallel Processors

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

- PA 3 out
- Hack 'n Seek
- The goal is to have fun with it
- Recitations today will talk about it
- Pizza party on Tuesday after Thanksgiving
- Final project (distributed ray tracer) out last week
- Demos: Dec 16 or 17

Opening the Box

Technology Trends

- DRAM capacity
- Increased
- Reduced cost

- Moore's Law
- Speed?
- Not really

Review: Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y "

Performance $_{X} /$ Performance $_{Y}$ $=$ Execution time $_{\mathrm{Y}} /$ Execution time $_{\mathrm{X}}=n$

- Example: time taken to run a program
- 10s on A, 15s on B
- Execution Time ${ }_{B}$ / Execution Time ${ }_{A}$ $=15 \mathrm{~s} / 10 \mathrm{~s}=1.5$
- So A is 1.5 times faster than B

Review: CPU Time

CPU Time $=$ CPU Clock Cycles \times Clock Cycle Time

$$
=\frac{\text { CPU Clock Cycles }}{\text { Clock Rate }}
$$

- Performance improved by
- Reducing number of clock cycles
- Increasing clock rate
- Hardware designer must often trade off clock rate against cycle count

Review: CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
- Aim for 6s CPU time
- Can do faster clock, but causes $1.2 \times$ clock cycles
- How fast must Computer B clock be?

Clock Cycles $_{\mathrm{A}}=$ CPU Time $_{\mathrm{A}} \times$ Clock Rate $_{\mathrm{A}}$

$$
=10 \mathrm{~s} \times 2 \mathrm{GHz}=20 \times 10^{9}
$$

Clock Rate ${ }_{\mathrm{B}}=\frac{1.2 \times 20 \times 10^{9}}{6 \mathrm{~s}}=\frac{24 \times 10^{9}}{6 \mathrm{~s}}=4 \mathrm{GHz}$

Review: Instruction Count and CPI

Clock Cycles $=$ Instruction Count \times Cycles per Instruction
 CPU Time $=$ Instruction Count \times CPI \times Clock Cycle Time
 $$
=\frac{\text { Instruction Count } \times \text { CPI }}{\text { Clock Rate }}
$$

- Instruction Count for a program
- Determined by program, ISA and compiler
- Average cycles per instruction
- Determined by CPU hardware
- If different instructions have different CPI
- Average CPI affected by instruction mix

Review: CPI Example

- Computer A: Cycle Time $=250 \mathrm{ps}, \mathrm{CPI}=2.0$
- Computer B: Cycle Time $=500 \mathrm{ps}, \mathrm{CPI}=1.2$
- Same ISA
- Which is faster, and by how much?

$$
\begin{aligned}
& \text { CPU Time }_{A}={\text { Instruction Count } \times \text { CPI }_{A} \times \text { Cycle Time }}_{A} \\
& =1 \times 2.0 \times 250 \mathrm{ps}=1 \times 500 \mathrm{ps} \quad \text { A is faster } . . .
\end{aligned}
$$

$$
\begin{aligned}
& =1 \times 1.2 \times 500 \mathrm{ps}=1 \times 600 \mathrm{ps} \\
& \frac{\text { CPU Time }_{\mathrm{B}}}{\text { CPUTime }_{\mathrm{A}}}=\frac{I \times 600 \mathrm{ps}}{1 \times 500 \mathrm{ps}}=1.2 \longleftarrow \ldots \text {...by this much }
\end{aligned}
$$

Review: Performance Summary

CPU Time $=\frac{\text { Instructions }}{\text { Program }} \times \frac{\text { Clock cycles }}{\text { Instruction }} \times \frac{\text { Seconds }}{\text { Clock cycle }}$

- Performance depends on
- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, T_{c}

Why Multicore?

- Moore's law
- A law about transistors
- Smaller means faster transistors
- Power consumption growing with transistors

Power Limits Performance

Power Trends

- In CMOS IC technology

Power $=$ Capacitive load \times Voltage $^{2} \times$ Frequency
$5 \mathrm{~V} \rightarrow 1 \mathrm{~V}$
$\times 1000$

High Power at Idle

- Look back at X4 power benchmark
- At 100\% load: 295W
- At 50\% load: 246W (83\%)
- At 10\% load: 180W (61\%)
- Google data center
- Mostly operates at $10 \%-50 \%$ load
- At 100% load less than 1% of the time

Why Multicore?

- Moore's law
- A law about transistors
- Smaller means faster transistors
- Power consumption growing with transistors
- The power wall
- We can't reduce voltage further
- We can't remove more heat
- How else can we improve performance?

Inside the Processor

- AMD Barcelona: 4 processor cores

Intel's argument

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

