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Traps
• Trap

– Any kind of a control transfer to the OS
• Syscall

– Synchronous, program-initiated control transfer from 
user to the OS to obtain service from the OS

– e.g. SYSCALL
• Exception

– Asynchronous, program-initiated control transfer from 
user to the OS in response to an exceptional event

– e.g. Divide by zero
• Interrupt

– Asynchronous, device-initiated control transfer from 
user to the OS

– e.g. Clock tick, network packet
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Reading

• Chapter 7 (VM) in 3rd edition (or Chapter 5)
• Chapter 8 (Disks) (or Chapter 6)
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Challenge
• How do we interface to other devices

– Keyboard
– Mouse
– Disk
– Network
– Printer
– …
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I/O System Characteristics
• Dependability is important

– Particularly for storage devices
• Performance measures

– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

Mainly interested in response time & diversity of 
devices

– Servers
Mainly interested in throughput & expandability of 
devices
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Memory Hierarchy

Tape

Disk

DRAM

L2

registers/L1

100s, sequential access

2 ns, random access

5 ns, random access

20-80 ns, random access

2-8 ms, random access

1 TB

16 KB

512 KB

2 GB

300 GB
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Tapes
Same basic principle for 8-tracks,
cassettes, VHS, atari tape drive, modern
tape storage

0     0     1     0    1    0      1    0     1
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Disks & CDs
Disks use same magnetic 

medium as tapes
– concentric rings

(not a spiral)

CDs & DVDs use optics, 
and a single spiral track

• Non-volatile
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Disk Physics

Typical 
parameters :
1 spindle
1 arm assembly
1-4 platters
1-2 sides/platter
1 head per side
(but only 1 
active head at a 
time)
5,400 – 15,000 
RPM
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Disk Accesses
Accessing a disk requires:
– specify sector: C (cylinder), H (head), and S (sector)
– specify size: number of sectors to read or write
– specify memory address

Performance:
seek time: move the arm 
assembly to track
Rotational delay: wait for 
sector to come around
transfer time: get the bits 
off the disk
Controller time: time for 
setup

Track
Sector

Seek Time
Rotation

Delay
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Example
• Average time to read/write 512-byte sector

– Disk rotation at 10,000 RPM
– Seek time: 6ms
– Transfer rate: 50 MB/sec
– Controller overhead: 0.2 ms

• Average time:
– Seek time + rotational delay + transfer time + 

controller overhead
– 6ms + 0.5 rotation/(10,000 RPM) + 0.5KB/(50 

MB/sec) + 0.2ms
– 6.0 + 3.0 + 0.01 + 0.2 = 9.2ms
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Disk Access Example
• If actual average seek time is 2ms

– Average read time = 5.2ms
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Disk Scheduling
Goal: minimize seek time

secondary goal: minimize rotational latency

FCFS (First come first served)
Shortest seek time 
SCAN/Elevator

First service all requests in one direction
Then reverse and serve in opposite direction

Circular SCAN
Go off the edge and come to the beginning and 
start all over again
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Disk Geometry: LBA
New machines use logical block 

addressing instead of CHS
– machine presents illusion of an array of blocks, 

numbered 0 to N

Modern disks…
– have varying number of sectors per track

roughly constant data density over disk
varying throughput over disk

– remap and reorder blocks (to avoid defects)
– completely obscure their actual physical 

geometry
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Flash Storage
• Nonvolatile semiconductor storage

– 100× – 1000× faster than disk
– Smaller, lower power
– But more $/GB (between disk and DRAM)
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Flash Types
• NOR flash: bit cell like a NOR gate

– Random read/write access
– Used for instruction memory in embedded systems

• NAND flash: bit cell like a NAND gate
– Denser (bits/area), but block-at-a-time access
– Cheaper per GB
– Used for USB keys, media storage, …

• Flash bits wears out after 1000’s of accesses
– Not suitable for direct RAM or disk replacement
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I/O vs. CPU Performance
• Amdahl’s Law

– Don’t neglect I/O performance as parallelism 
increases compute performance

• Example
– Benchmark takes 90s CPU time, 10s I/O time
– Double the number of CPUs/2 years

I/O unchanged

47%21s10s11s+6
31%33s10s23s+4
18%55s10s45s+2
10%100s10s90snow

% I/O timeElapsed timeI/O timeCPU timeYear
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I/O Controllers
• We could place every device on the 

interconnect
– We would have to replace devices as we 

improve/change the interconnect

• We could decouple them from the 
interconnect
– Via an “I/O controller”
– Need to replace only the I/O controller when 

the CPU/Memory interface changes
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Interconnecting Components
• Need interconnections between

– CPU, memory, I/O controllers
• Bus: shared communication channel

– Parallel set of wires for data and 
synchronization of data transfer
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Buses
• A bus is a shared collections of wires with 

multiple senders/receivers
– Has an associated protocol, obeyed by 

senders and receivers, for sending and 
receiving data

– Simple broadcast mechanism: all devices can 
see all transactions

– Pros: cost-effective
– Cons: communication bottleneck
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Bus Parameters
• Bus width

– Number of wires, separate control/data?
• Data width

– Number of bits per transfer
• Transfer size

– Number of words per bus transaction
• Synchronous (clock), asynchronous (wider 

variety of devices)
– Handshaking protocol

Sender/receiver proceed only if in agreement
• Buses: Firewire, SCSI, PCI Express, USB
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Bus Types
• Processor-Memory buses

– Short, high speed
– Design is matched to memory organization

• I/O buses
– Longer, allowing multiple connections
– Specified by standards for interoperability
– Connect to processor-memory bus through a bridge

• More recent alternative: high-speed serial 
connections with switches
– Like networks
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Typical x86 PC I/O System
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I/O Commands
• I/O devices are managed by I/O controller 

hardware
– Transfers data to/from device

• Command registers
– Cause device to do something

• Status registers
– Indicate what the device is doing and occurrence of 

errors
• Data registers

– Write: transfer data to a device
– Read: transfer data from a device
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Communication Interface
• Programmed I/O

– CPU has dedicated, special instructions to access I/O 
registers

– Instruction specifies device and operation
– Protection: I/O instructions are privileged

• Memory-mapped I/O
– Each device appears as if it is part of the memory 

address space
– Reads/Writes to special addresses are converted into 

I/O operations
– Device communication goes over the memory bus
– Protection: device protected by the MMU 
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Memory-Mapped I/O

Processor
Address 
Space

I/O Device
Memory 

and Control
Registers
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Memory-Mapped I/O
• Basic Idea – Make control registers and 

I/O device memory appear to be part of the 
system’s main memory
– Reads and writes to that region of the memory 

are translated by OS into device accesses
– Easy to support variable numbers/types of 

devices 
Managing new devices is now  memory allocation
Example: accessing memory on a PCMCIA card

• Once card memory mapped into address space, just 
hand out pointers like conventional memory
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Processor Memory Maps
• Some OSes use fixed memory maps

• Others use variable mappings
– Unix/Linux has virtual memory system, maps 

I/O devices onto memory only when 
requested. This allows more flexibility for a 
system to accommodate variable number I/O 
devices
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Communication Method
• Polling

• Periodically check I/O status register
– If device ready, do operation
– If error, take action

• Common in small or low-performance real-
time embedded systems
– Predictable timing
– Low hardware cost

• In other systems, wastes CPU time
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Communication Method
• Interrupts

– Device sends interrupt
– Cause information often identifies the 

interrupting device
– OS responds by communicating with the 

device
– Uses exception handling hardware
– Interrupt priority levels

• Priority interrupts
– Devices needing more urgent attention get 

higher priority
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I/O Data Transfer
• Polling and interrupt-driven I/O

– CPU transfers data between memory and I/O 
data registers

– Time consuming for high-speed devices
• Direct memory access (DMA)

– OS provides starting address in memory
– I/O controller transfers to/from memory 

autonomously
– Controller interrupts on completion or error
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DMA: Direct Memory Access
Non-DMA transfer:  I/O device CPU 
RAM
– for (i = 1 .. n)

CPU sends transfer request to device
I/O writes data to bus, CPU reads into registers
CPU writes data to registers to memory

DMA transfer:  I/O device RAM
– CPU sets up DMA request on device
– for (i = 1 .. n)

I/O device writes data to bus, RAM reads data

CPU RAM

DISK

CPU RAM

DISK
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How to do DMA?

• DMA implemented with special controller
– Transfers data between I/O device and 

memory
• Processor sets up DMA

– Which device, operation, address, # of bytes
– DMA

gets bus
Transfers data (maybe multiple requests)

– DMA interrupts processor to signal end of I/O 
operation
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DMA Issues (1): Addressing
Problem: device operates on bus or 
physical addresses, programs operate with 
virtual addresses
Solution: DMA uses physical addresses
– Allocate contiguous physical pages for DMA
– Or may need to break transfers into page-sized 

chunks, and chain multiple transfers
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DMA Issues (1): Addressing
Problem: device operates on bus or 
physical addresses, programs operate with 
virtual addresses
Alternate solution: DMA uses virutal
addresses
– add translation hardware to dma controllers
– a software-controlled, miniature TLB
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DMA Issues (2): Virtual Mem
Problem: DMA destination page may not be 
in memory (i.e. swapped to disk by virtual 
memory system)
Solution:
– pin the page before initiating DMA transfer 

Alternate solution:
– DMA to a pinned kernel page, then memcpy

elsewhere
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DMA Issues (3): Legacy Cruft
DMA controller (or bus) can't support full  
size addresses
– many legacy DMA devices can use only 16-bit 

addresses 
– Solution: DMA to dedicated low-addressed 

physical pages, then memcopy elsewhere
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DMA Issues (4): Caches
What if L1 or L2 caches DMA-related data?
– DMA write to device from RAM: device gets stale data 

if cache is dirty
– DMA read from device to RAM: cache will have stale 

data

Solution: (software enforced coherence)
– flush entire cache (or part of cache) before DMA 

begins
– Or, don't touch pages during DMA
– Or, mark pages as uncacheable in VM page tables

(and update the TLB entries for those pages)
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DMA Issues (4): Caches
What if L1 or L2 caches DMA-related data?
– DMA write to device from RAM: device gets stale data if 

cache is dirty
– DMA read from device to RAM: cache will have stale 

data
Alternate solution: (hardware cache coherence, 
aka snooping)
– cache controller listens on bus, and conspires with 

RAM
– DMA write: cache services request if it has the data, 

otherwise RAM services
– DMA read: cache invalidates data seen on the bus

or, cache updates itself when it sees data on the bus
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Summary
• Disks provide nonvolatile memory
• I/O performance measures

– Throughput, response time
– Dependability and cost very important

• Buses used to connect CPU, memory,
I/O controllers
– Polling, interrupts, DMA

• What we didn’t discuss: RAID
– Redundancy for fault tolerance
– Speed


