
1

Lec 23: I/O and Disks

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Traps
• Trap

– Any kind of a control transfer to the OS
• Syscall

– Synchronous, program-initiated control transfer from
user to the OS to obtain service from the OS

– e.g. SYSCALL
• Exception

– Asynchronous, program-initiated control transfer from
user to the OS in response to an exceptional event

– e.g. Divide by zero
• Interrupt

– Asynchronous, device-initiated control transfer from
user to the OS

– e.g. Clock tick, network packet

2

© Kavita Bala, Computer Science, Cornell University

Reading

• Chapter 7 (VM) in 3rd edition (or Chapter 5)
• Chapter 8 (Disks) (or Chapter 6)

© Kavita Bala, Computer Science, Cornell University

Challenge
• How do we interface to other devices

– Keyboard
– Mouse
– Disk
– Network
– Printer
– …

3

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

I/O System Characteristics
• Dependability is important

– Particularly for storage devices
• Performance measures

– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

Mainly interested in response time & diversity of
devices

– Servers
Mainly interested in throughput & expandability of
devices

4

© Kavita Bala, Computer Science, Cornell University

Memory Hierarchy

Tape

Disk

DRAM

L2

registers/L1

100s, sequential access

2 ns, random access

5 ns, random access

20-80 ns, random access

2-8 ms, random access

1 TB

16 KB

512 KB

2 GB

300 GB

© Kavita Bala, Computer Science, Cornell University

Tapes
Same basic principle for 8-tracks,
cassettes, VHS, atari tape drive, modern
tape storage

0 0 1 0 1 0 1 0 1

5

© Kavita Bala, Computer Science, Cornell University

Disks & CDs
Disks use same magnetic

medium as tapes
– concentric rings

(not a spiral)

CDs & DVDs use optics,
and a single spiral track

• Non-volatile

© Kavita Bala, Computer Science, Cornell University

Disk Physics

Typical
parameters :
1 spindle
1 arm assembly
1-4 platters
1-2 sides/platter
1 head per side
(but only 1
active head at a
time)
5,400 – 15,000
RPM

6

© Kavita Bala, Computer Science, Cornell University

Disk Accesses
Accessing a disk requires:
– specify sector: C (cylinder), H (head), and S (sector)
– specify size: number of sectors to read or write
– specify memory address

Performance:
seek time: move the arm
assembly to track
Rotational delay: wait for
sector to come around
transfer time: get the bits
off the disk
Controller time: time for
setup

Track
Sector

Seek Time
Rotation

Delay

© Kavita Bala, Computer Science, Cornell University

Example
• Average time to read/write 512-byte sector

– Disk rotation at 10,000 RPM
– Seek time: 6ms
– Transfer rate: 50 MB/sec
– Controller overhead: 0.2 ms

• Average time:
– Seek time + rotational delay + transfer time +

controller overhead
– 6ms + 0.5 rotation/(10,000 RPM) + 0.5KB/(50

MB/sec) + 0.2ms
– 6.0 + 3.0 + 0.01 + 0.2 = 9.2ms

7

© Kavita Bala, Computer Science, Cornell University

Disk Access Example
• If actual average seek time is 2ms

– Average read time = 5.2ms

© Kavita Bala, Computer Science, Cornell University

Disk Scheduling
Goal: minimize seek time

secondary goal: minimize rotational latency

FCFS (First come first served)
Shortest seek time
SCAN/Elevator

First service all requests in one direction
Then reverse and serve in opposite direction

Circular SCAN
Go off the edge and come to the beginning and
start all over again

8

© Kavita Bala, Computer Science, Cornell University

Disk Geometry: LBA
New machines use logical block

addressing instead of CHS
– machine presents illusion of an array of blocks,

numbered 0 to N

Modern disks…
– have varying number of sectors per track

roughly constant data density over disk
varying throughput over disk

– remap and reorder blocks (to avoid defects)
– completely obscure their actual physical

geometry

© Kavita Bala, Computer Science, Cornell University

Flash Storage
• Nonvolatile semiconductor storage

– 100× – 1000× faster than disk
– Smaller, lower power
– But more $/GB (between disk and DRAM)

9

© Kavita Bala, Computer Science, Cornell University

Flash Types
• NOR flash: bit cell like a NOR gate

– Random read/write access
– Used for instruction memory in embedded systems

• NAND flash: bit cell like a NAND gate
– Denser (bits/area), but block-at-a-time access
– Cheaper per GB
– Used for USB keys, media storage, …

• Flash bits wears out after 1000’s of accesses
– Not suitable for direct RAM or disk replacement

© Kavita Bala, Computer Science, Cornell University

I/O vs. CPU Performance
• Amdahl’s Law

– Don’t neglect I/O performance as parallelism
increases compute performance

• Example
– Benchmark takes 90s CPU time, 10s I/O time
– Double the number of CPUs/2 years

I/O unchanged

47%21s10s11s+6
31%33s10s23s+4
18%55s10s45s+2
10%100s10s90snow

% I/O timeElapsed timeI/O timeCPU timeYear

10

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

I/O Controllers
• We could place every device on the

interconnect
– We would have to replace devices as we

improve/change the interconnect

• We could decouple them from the
interconnect
– Via an “I/O controller”
– Need to replace only the I/O controller when

the CPU/Memory interface changes

11

© Kavita Bala, Computer Science, Cornell University

Interconnecting Components
• Need interconnections between

– CPU, memory, I/O controllers
• Bus: shared communication channel

– Parallel set of wires for data and
synchronization of data transfer

© Kavita Bala, Computer Science, Cornell University

Buses
• A bus is a shared collections of wires with

multiple senders/receivers
– Has an associated protocol, obeyed by

senders and receivers, for sending and
receiving data

– Simple broadcast mechanism: all devices can
see all transactions

– Pros: cost-effective
– Cons: communication bottleneck

12

© Kavita Bala, Computer Science, Cornell University

Bus Parameters
• Bus width

– Number of wires, separate control/data?
• Data width

– Number of bits per transfer
• Transfer size

– Number of words per bus transaction
• Synchronous (clock), asynchronous (wider

variety of devices)
– Handshaking protocol

Sender/receiver proceed only if in agreement
• Buses: Firewire, SCSI, PCI Express, USB

© Kavita Bala, Computer Science, Cornell University

Bus Types
• Processor-Memory buses

– Short, high speed
– Design is matched to memory organization

• I/O buses
– Longer, allowing multiple connections
– Specified by standards for interoperability
– Connect to processor-memory bus through a bridge

• More recent alternative: high-speed serial
connections with switches
– Like networks

13

© Kavita Bala, Computer Science, Cornell University

Typical x86 PC I/O System

© Kavita Bala, Computer Science, Cornell University

I/O Commands
• I/O devices are managed by I/O controller

hardware
– Transfers data to/from device

• Command registers
– Cause device to do something

• Status registers
– Indicate what the device is doing and occurrence of

errors
• Data registers

– Write: transfer data to a device
– Read: transfer data from a device

14

© Kavita Bala, Computer Science, Cornell University

Communication Interface
• Programmed I/O

– CPU has dedicated, special instructions to access I/O
registers

– Instruction specifies device and operation
– Protection: I/O instructions are privileged

• Memory-mapped I/O
– Each device appears as if it is part of the memory

address space
– Reads/Writes to special addresses are converted into

I/O operations
– Device communication goes over the memory bus
– Protection: device protected by the MMU

© Kavita Bala, Computer Science, Cornell University

Memory-Mapped I/O

Processor
Address
Space

I/O Device
Memory

and Control
Registers

15

© Kavita Bala, Computer Science, Cornell University

Memory-Mapped I/O
• Basic Idea – Make control registers and

I/O device memory appear to be part of the
system’s main memory
– Reads and writes to that region of the memory

are translated by OS into device accesses
– Easy to support variable numbers/types of

devices
Managing new devices is now memory allocation
Example: accessing memory on a PCMCIA card

• Once card memory mapped into address space, just
hand out pointers like conventional memory

© Kavita Bala, Computer Science, Cornell University

Processor Memory Maps
• Some OSes use fixed memory maps

• Others use variable mappings
– Unix/Linux has virtual memory system, maps

I/O devices onto memory only when
requested. This allows more flexibility for a
system to accommodate variable number I/O
devices

16

© Kavita Bala, Computer Science, Cornell University

Communication Method
• Polling

• Periodically check I/O status register
– If device ready, do operation
– If error, take action

• Common in small or low-performance real-
time embedded systems
– Predictable timing
– Low hardware cost

• In other systems, wastes CPU time

© Kavita Bala, Computer Science, Cornell University

Communication Method
• Interrupts

– Device sends interrupt
– Cause information often identifies the

interrupting device
– OS responds by communicating with the

device
– Uses exception handling hardware
– Interrupt priority levels

• Priority interrupts
– Devices needing more urgent attention get

higher priority

17

© Kavita Bala, Computer Science, Cornell University

I/O Data Transfer
• Polling and interrupt-driven I/O

– CPU transfers data between memory and I/O
data registers

– Time consuming for high-speed devices
• Direct memory access (DMA)

– OS provides starting address in memory
– I/O controller transfers to/from memory

autonomously
– Controller interrupts on completion or error

© Kavita Bala, Computer Science, Cornell University

DMA: Direct Memory Access
Non-DMA transfer: I/O device CPU
RAM
– for (i = 1 .. n)

CPU sends transfer request to device
I/O writes data to bus, CPU reads into registers
CPU writes data to registers to memory

DMA transfer: I/O device RAM
– CPU sets up DMA request on device
– for (i = 1 .. n)

I/O device writes data to bus, RAM reads data

CPU RAM

DISK

CPU RAM

DISK

18

© Kavita Bala, Computer Science, Cornell University

How to do DMA?

• DMA implemented with special controller
– Transfers data between I/O device and

memory
• Processor sets up DMA

– Which device, operation, address, # of bytes
– DMA

gets bus
Transfers data (maybe multiple requests)

– DMA interrupts processor to signal end of I/O
operation

© Kavita Bala, Computer Science, Cornell University

DMA Issues (1): Addressing
Problem: device operates on bus or
physical addresses, programs operate with
virtual addresses
Solution: DMA uses physical addresses
– Allocate contiguous physical pages for DMA
– Or may need to break transfers into page-sized

chunks, and chain multiple transfers

19

© Kavita Bala, Computer Science, Cornell University

DMA Issues (1): Addressing
Problem: device operates on bus or
physical addresses, programs operate with
virtual addresses
Alternate solution: DMA uses virutal
addresses
– add translation hardware to dma controllers
– a software-controlled, miniature TLB

© Kavita Bala, Computer Science, Cornell University

DMA Issues (2): Virtual Mem
Problem: DMA destination page may not be
in memory (i.e. swapped to disk by virtual
memory system)
Solution:
– pin the page before initiating DMA transfer

Alternate solution:
– DMA to a pinned kernel page, then memcpy

elsewhere

20

© Kavita Bala, Computer Science, Cornell University

DMA Issues (3): Legacy Cruft
DMA controller (or bus) can't support full
size addresses
– many legacy DMA devices can use only 16-bit

addresses
– Solution: DMA to dedicated low-addressed

physical pages, then memcopy elsewhere

© Kavita Bala, Computer Science, Cornell University

DMA Issues (4): Caches
What if L1 or L2 caches DMA-related data?
– DMA write to device from RAM: device gets stale data

if cache is dirty
– DMA read from device to RAM: cache will have stale

data

Solution: (software enforced coherence)
– flush entire cache (or part of cache) before DMA

begins
– Or, don't touch pages during DMA
– Or, mark pages as uncacheable in VM page tables

(and update the TLB entries for those pages)

21

© Kavita Bala, Computer Science, Cornell University

DMA Issues (4): Caches
What if L1 or L2 caches DMA-related data?
– DMA write to device from RAM: device gets stale data if

cache is dirty
– DMA read from device to RAM: cache will have stale

data
Alternate solution: (hardware cache coherence,
aka snooping)
– cache controller listens on bus, and conspires with

RAM
– DMA write: cache services request if it has the data,

otherwise RAM services
– DMA read: cache invalidates data seen on the bus

or, cache updates itself when it sees data on the bus

© Kavita Bala, Computer Science, Cornell University

Summary
• Disks provide nonvolatile memory
• I/O performance measures

– Throughput, response time
– Dependability and cost very important

• Buses used to connect CPU, memory,
I/O controllers
– Polling, interrupts, DMA

• What we didn’t discuss: RAID
– Redundancy for fault tolerance
– Speed

