
1

Lec 22: Interrupts

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 3
• HW4: due this Friday

• PA 3 out Nov 14th

– Due Nov 25th (feel free to turn it in early)
– Demos and pizza party: Dec 1st or 2nd

• Prelim 2: Dec 4th 

• Final project: distributed multicore ray tracer
– Due exam week



2

© Kavita Bala, Computer Science, Cornell University

Caches/TLBs/VM
Caches, TLBs, Virtual Memory all understood 

by examining how they deal with the four 
questions
1. Where can block be placed?

Cache: direct, n-way set
TLB: fully assoc
VM: direct? Fully assoc?

2. What block is replaced on miss?
LRU? Random?

3. How are writes handled?
Write-back (fast, block at time)
Write-through (simple, reason about consistency)

© Kavita Bala, Computer Science, Cornell University

Virtual Memory Design Parameters

0.01% to 2%10-4 to 10-5%2%-5%Miss 
rates

10-100010M-100M10-25Miss 
penalty

4-324k to 64k16-64Block 
size (B)

2 to 161M to 4G16 to 64Size 
(kB)

64 to 4k16k to 1M1/4k to 4kSize 
(blocks)

TLBPaged MemoryL1



3

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary
• Virtual to physical address translation is 

assisted by hardware
• Need hardware and software support
• Software

– Page table storage, fault detection and 
updating

Page faults result in interrupts that are then 
handled by the OS
Must update appropriately Dirty and Reference 
bits (e.g., ~LRU) in the Page Tables

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary
• OS has to keep TLB valid
• Keep TLB valid on context switch

– Flush TLB when new process runs (x86)
– Store process id (MIPs)

• Also, store pids with cache to avoid flushing 
cache on context switches

• Hardware support
– Page table register
– Process id register



4

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary

• Hardware support for exceptions
– Exception program counter
– Cause register
– Special instructions to load TLB 

Only do-able by kernel

• Precise and imprecise exceptions
– In pipelined architecture

Have to correctly identify PC of exception
MIPS and modern processors support this

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary

• Hardware guarantees
– Previous instructions complete
– Later instructions are flushed
– EPC and cause register are set
– Jump to prearranged address in OS
– When you come back, restart instruction

– Disable exceptions while responding to one
Otherwise can overwrite EPC and cause



5

Privileged Mode,
Exceptions and Interrupts

© Kavita Bala, Computer Science, Cornell University

Privilege Levels
• Some processor functionality cannot be made 

accessible to untrusted user applications
– e.g. HALT, change MMU settings, set clock, reset 

devices, manipulate device settings, …
• Need to have a designated mediator between 

untrusted/untrusting applications
– The operating system (OS)



6

© Kavita Bala, Computer Science, Cornell University

Privilege Mode
• Need to delineate between untrusted applications and 

OS code
– Use a “privilege mode” bit in the processor
– 0 = Untrusted = user, 1 = Trusted = OS

• Privilege mode bit indicates if the current program can 
perform privileged operations
– On system startup, privilege mode is set to 1, and 

processor jumps to a well-known address
– The OS boot code resides at this address
– The OS sets up the devices, initializes the MMU, 

loads applications, and resets the privilege bit before 
invoking the application

• Applications must transfer control back to OS for 
privileged operations

© Kavita Bala, Computer Science, Cornell University

Terminology
• Trap

– Any kind of a control transfer to the OS
• Syscall

– Synchronous, program-initiated control transfer from 
user to the OS to obtain service from the OS

– e.g. SYSCALL
• Exception

– Asynchronous, program-initiated control transfer from 
user to the OS in response to an exceptional event

– e.g. Divide by zero, TLB miss, Page fault
• Interrupt

– Asynchronous, device-initiated control transfer from 
user to the OS

– e.g. Network packet, I/O complete



7

© Kavita Bala, Computer Science, Cornell University

Sample System Calls
• Print character to screen

– Needs to multiplex the shared screen 
resource between multiple applications

• Send a packet on the network
– Need to manipulate the internals of a device 

• Allocate a page
– Needs to update page tables & MMU

© Kavita Bala, Computer Science, Cornell University

System Calls
• A system call is a controlled transfer of execution 

from unprivileged code to the OS
– An alternative is to make OS code read-only, and 

allow applications to just jump to the desired system 
call routine (less clean)

• A SYSCALL instruction transfers control to a 
system call handler at a fixed address
– On the MIPS, v0 holds the syscall number, which 

specifies the operation the application is requesting



8

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Where does OS live?
• In its own address space?

– But then syscall would have to switch to a 
different address space 

– Also harder to deal with syscall arguments 
passed as pointers

• So in the same address space as process
– Use protection bits to prevent user code from 

writing kernel
– Higher part of VM, lower part of physical 

memory



9

© Kavita Bala, Computer Science, Cornell University

Full System Layout
• Typically all kernel text, most data

– At same VA in every address space
– Map kernel in contiguous physical 

memory when boot loader puts kernel 
into physical memory

• The OS is omnipresent and steps 
in where necessary to aid 
application execution
– Typically resides in high memory

• When an application needs to 
perform a privileged operation, it 
needs to invoke the OS

OS Text

Stack

Heap

Data
Text

OS Data
OS Heap

OS Stack

© Kavita Bala, Computer Science, Cornell University

SYSCALL instruction
• SYSCALL instruction does an atomic jump to a 

controlled location
– Switches the sp to the kernel stack
– Saves the old (user) SP value
– Saves the old (user) PC value (= return 

address)
– Saves the old privilege mode
– Sets the new privilege mode to 1
– Sets the new PC to the kernel syscall handler



10

© Kavita Bala, Computer Science, Cornell University

SYSCALL instruction
• Kernel system call handler carries out the 

desired system call
– Saves callee-save registers
– Examines the syscall number
– Checks arguments for sanity
– Performs operation
– Stores result in v0
– Restores callee-save registers
– Performs a “return from syscall” instruction, 

which restores the privilege mode, SP and PC

© Kavita Bala, Computer Science, Cornell University

Libraries and Wrappers
• Compilers do not emit SYSCALL instructions

– They do not know the interface exposed by the OS
• Instead, applications are compiled with standard 

libraries, which provide “syscall wrappers”
– printf() -> write(); malloc() -> sbrk(); recv(); open(); 

close(); …

• Wrappers are:
– written in assembler
– internally issue a SYSCALL instruction
– pass arguments to kernel
– pass result back to calling application



11

© Kavita Bala, Computer Science, Cornell University

Advantages?
• Portability

© Kavita Bala, Computer Science, Cornell University

Exceptions
• System calls are control transfers to the OS, performed 

under the control of the user program

• Sometimes, need to transfer control to the OS at a time 
when the user program least expects it
– Division by zero,
– Alert from power supply that electricity is going out
– Alert from network device that a packet just arrived
– Clock notifying the processor that clock just ticked

• Some of these causes for interruption of execution have 
nothing to do with the user application

• Need a (slightly) different mechanism, that allows 
resuming the user application



12

© Kavita Bala, Computer Science, Cornell University

Interrupts & Exceptions
• On an interrupt or exception

– Switches the sp to the kernel stack
– Saves the old (user) SP value
– Saves the old (user) PC value
– Saves the old privilege mode
– Saves cause of the interrupt/privilege
– Sets the new privilege mode to 1
– Sets the new PC to the kernel 

interrupt/exception handler

© Kavita Bala, Computer Science, Cornell University

Interrupts & Exceptions
• Kernel interrupt/exception handler handles the 

event
– Saves all registers
– Examines the cause
– Performs operation required
– Restores all registers
– Performs a “return from interrupt” instruction, 

which restores the privilege mode, SP and PC



13

© Kavita Bala, Computer Science, Cornell University

Syscall vs. Interrupt
• The differences lie in how they are initiated, and 

how much state needs to be saved and restored

• Syscall requires much less state saving
– Caller-save registers are already saved by the 

application

• Interrupts typically require saving and restoring 
the full state of the processor
– Because the application got struck by a lightning bolt 

without anticipating the control transfer

© Kavita Bala, Computer Science, Cornell University

Terminology
• Trap

– Any kind of a control transfer to the OS
• Syscall

– Synchronous, program-initiated control transfer from 
user to the OS to obtain service from the OS

– e.g. SYSCALL
• Exception

– Asynchronous, program-initiated control transfer from 
user to the OS in response to an exceptional event

– e.g. Divide by zero
• Interrupt

– Asynchronous, device-initiated control transfer from 
user to the OS

– e.g. Clock tick, network packet


