Lec 21: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

HW 4 out: smash the stack
— Due Nov 14th

PA 3 out Nov 14t
— Due Nov 25t (feel free to turn it in early)
— Demos and pizza party: Dec 1st or 2nd

Prelim 2: Dec 4th

Final project: distributed multicore ray tracer
— Due exam week

© Kavita Bala, Computer Science, Cornell University

How to make it work?

» Challenge: Virtual Memory can be slow!

e At run-time: virtual address must be translated to a
physical address

* MMU (combination of hardware and software)

Physical
virtual addrs addrs
CPU . l [mmu F l .| memory

© Kavita Bala, Computer Science, Cornell University

Address Translation

 How to translate addresses?
—Per word? Much too expensive
—Per block? Sure, but what is block size?

» Costs dictate granularity of translation
— Cost to disk is very large
— Block size has to be large too
= Amortization
» Page Table: stores this translation
— Basically a huge array of translations
— Each process has one

© Kavita Bala, Computer Science, Cornell University

Virtual Addressing with a Cache

* |t takes an extra memory access to

translate a VA to a PA

VA PA

CPU Trans- Cache
lation

1w 1 [

* This makes memory (cache) accesses
very expensive (if every access was really

two accesses)

miss

Main
Memory

© Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffer (TLB)

« Hardware solution to problem
» A small cache of recently used address

mappings
— TLB hit: avoid a page table lookup

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

hit

VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit

Trans-
lation

[data

e A TLB miss:

— If page in main memory, TLB miss can be
handled (in hardware or software)
= | oad from the page table into the TLB
= Takes 10’s of cycles

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary

» Translation Lookaside Buffer (TLB) that
caches the recent translations
— TLB access time is part of the cache hit time

— May allot an extra stage in the pipeline for
TLB access

© Kavita Bala, Computer Science, Cornell University

Remove TLB from critical path?

» A virtually addressed cache would only

require address translation on cache

misses

CPU

VA

Trans-
lation

PA

hitr

Cache

1

data

Main
Memory

» Cons: have to flush the cache on context

switch

© Kavita Bala, Computer Science, Cornell University

Virtual vs. Physical Caches

addr

CPU

A]

MMU

data

addr
CPU Cache
el SRAM

Cache works on virtual addresses

Cache
> SRAM —

Cache works on physical addresses

Memory
DRAM

MMU

—
—

Memory
DRAM

» L1 (on-chip) caches are typically virtual
» L2 (off-chip) caches are typically physical

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit
Trans-
lation
[R— data

o A TLB miss:
— If the page is not in main memory
= Page fault!
= Takes 1,000,000’s of cycles to service a page fault
* TLB misses are much more frequent than
true page faults

© Kavita Bala, Computer Science, Cornell University

Paging

3 page is on
backing store /___~—-—-—-—__._\
\x%___f/
operating
system @
rertg)nce trap
load M = [i
restart page table
instruction
free frame o
® @
reset page bring in
table missing page
physical
memary

W navild bdid, LUIHpuULel dUietve, CUITIEN UTIVETSILY

Example: paging to disk

Compiler (gcc) needs a new page of memory
Trap/exception into OS

— OS gets page from application (vi)

If page is clean, give up page to gcc

If page is dirty, ... only copy in memory

— Write to disk, before giving it to gcc

Mark page invalid in vi

— (if vi needs this soon, it will trap)

© Kavita Bala, Computer Science, Cornell University

Working set model

S2oUJ2424 JO 2

© Kavita Bala, Computer Science, Cornell University

Thrashing

» Thrashing: processes on system require

more memory than it has

= gcc removes Vi page

» vi comes back and removes gcc page
— Spend lot of time waiting to read pages
—i/o device at 100% utilization

= But no useful work is getting done
— We want Virtual Memory

= Size of disk, access time of main memory
— We have

= Access time of disk

© Kavita Bala, Computer Science, Cornell University

Reasons for Thrashing

* Process doesn’t reuse memory
— Past != future I— access pattern

* Process reuses memaory | o1 |
— But it doesn't fit mem

* Individually, processes fit in memory

— But there are too many
e

mem

© Kavita Bala, Computer Science, Cornell University

