
1

Lec 21: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 4 out: smash the stack

– Due  Nov 14th

• PA 3 out Nov 14th

– Due Nov 25th (feel free to turn it in early)
– Demos and pizza party: Dec 1st or 2nd

• Prelim 2: Dec 4th 

• Final project: distributed multicore ray tracer
– Due exam week



2

© Kavita Bala, Computer Science, Cornell University

How to make it work?
• Challenge: Virtual Memory can be slow!
• At run-time: virtual address must be translated to a 

physical address
• MMU (combination of hardware and software)

© Kavita Bala, Computer Science, Cornell University

Address Translation

• How to translate addresses?
– Per word? Much too expensive
– Per block? Sure, but what is block size?

• Costs dictate granularity of translation 
– Cost to disk is very large
– Block size has to be large too

Amortization

• Page Table: stores this translation
– Basically a huge array of translations
– Each process has one



3

© Kavita Bala, Computer Science, Cornell University

Virtual Addressing with a Cache
• It takes an extra memory access to 

translate a VA to a PA

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

• This makes memory (cache) accesses 
very expensive (if every access was really 
two accesses)

© Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffer (TLB)

• Hardware solution to problem
• A small cache of recently used address 

mappings
– TLB hit: avoid a page table lookup



4

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss: 
– If page in main memory, TLB miss can be 

handled (in hardware or software) 
Load from the page table into the TLB
Takes 10’s of cycles 

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

© Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary
• Translation Lookaside Buffer (TLB) that 

caches the recent translations
– TLB access time is part of the cache hit time
– May allot an extra stage in the pipeline for 

TLB access



5

© Kavita Bala, Computer Science, Cornell University

Remove TLB from critical path?

• A virtually addressed cache would only 
require address translation on cache 
misses

• Cons: have to flush the cache on context 
switch

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

© Kavita Bala, Computer Science, Cornell University

Virtual vs. Physical Caches

• L1 (on-chip) caches are typically virtual
• L2 (off-chip) caches are typically physical

CPU
Cache
SRAM

Memory
DRAM

addr

data
MMU

Cache
SRAM

MMUCPU Memory
DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses



6

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss: 
– If the page is not in main memory

Page fault!
Takes 1,000,000’s of cycles to service a page fault

• TLB misses are much more frequent than 
true page faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

© Kavita Bala, Computer Science, Cornell University

Paging



7

© Kavita Bala, Computer Science, Cornell University

Example: paging to disk
• Compiler (gcc) needs a new page of memory
• Trap/exception into OS

– OS gets page from application (vi)
• If page is clean, give up page to gcc
• If page is dirty, … only copy in memory

– Write to disk, before giving it to gcc
• Mark page invalid in vi

– (if vi needs this soon, it will trap)

© Kavita Bala, Computer Science, Cornell University



8

© Kavita Bala, Computer Science, Cornell University

Thrashing
• Thrashing: processes on system require 

more memory than it has
gcc removes vi page
vi comes back and removes gcc page

– Spend lot of time waiting to read pages
– i/o device at 100% utilization

But no useful work is getting done
– We want Virtual Memory

Size of disk, access time of main memory
– We have

Access time of disk

© Kavita Bala, Computer Science, Cornell University

Reasons for Thrashing
• Process doesn’t reuse memory

– Past != future

• Process reuses memory
– But it doesn’t fit

• Individually, processes fit in memory
– But there are too many


