
1

Lec 20: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 3 out: cache simulation

– Recitations this week on debugging C
– Due Nov 6th

• HW 4: smash the stack
– Out Nov 6th

– Due Nov 14th

• PA 3 out Nov 14th

– Due Nov 25th (feel free to turn it in early)
– Demos and pizza party: Dec 1st or 2nd

• Prelim 2: Dec 4th

• Final project: distributed multicore ray tracer
– Due exam week

2

© Kavita Bala, Computer Science, Cornell University

How to make it work?
• Challenge: Virtual Memory can be slow!
• At run-time: virtual address must be translated to a

physical address
• MMU (combination of hardware and software)

© Kavita Bala, Computer Science, Cornell University

Address Translation

• How to translate addresses?
– Per word? Much too expensive
– Per block? Sure, but what is block size?

• Costs dictate granularity of translation
– Cost to disk is very large
– Block size has to be large too

Amortization

3

© Kavita Bala, Computer Science, Cornell University

Page Table

• Each process has separate mapping of
virtual to physical pages

• Page Table: stores this translation
– Basically a huge array of translations

© Kavita Bala, Computer Science, Cornell University

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an
address translation from the virtual space
to the physical space

4

© Kavita Bala, Computer Science, Cornell University

Page Table for Translation

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table
(in main memory)

Offset

Physical page #

Offset

swap
space

© Kavita Bala, Computer Science, Cornell University

Virtual Addressing with a Cache
• Thus it takes an extra memory access to

translate a VA to a PA

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

• This makes memory (cache) accesses
very expensive (if every access was really
two accesses)

5

© Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffer (TLB)
• Page Table has to be in main memory

• But still too slow
• What’s our solution? A cache of course

• Hardware: TLB
• A small cache of recently used address

mappings
– TLB hit: avoid a page table lookup

© Kavita Bala, Computer Science, Cornell University

Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)

6

© Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffers (TLBs)

• TLB can be organized as fully associative,
set associative, or direct mapped
– Typically fully associative

V Virtual Page # Physical Page # Dirty Ref

• TLB access time is typically smaller than
cache access time
– Because TLBs are much smaller than caches
– Typically not more than 64 to 512 entries
– CPU pipeline speed: small/fast

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss:
– If page in main memory, TLB miss can be

handled (in hardware or software)
Load from the page table into the TLB
Takes 10’s of cycles

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

7

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss:
– If the page is not in main memory

Page fault!
Takes 1,000,000’s of cycles to service a page fault

• TLB misses are much more frequent than
true page faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

© Kavita Bala, Computer Science, Cornell University

8

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Remove TLB from critical path?

• A virtually addressed cache would only
require address translation on cache
misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

9

© Kavita Bala, Computer Science, Cornell University

Virtual vs. Physical Caches

• L1 (on-chip) caches are typically virtual
• L2 (off-chip) caches are typically physical

CPU
Cache
SRAM

Memory
DRAM

addr

data
MMU

Cache
SRAM

MMUCPU Memory
DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

© Kavita Bala, Computer Science, Cornell University

Paging

