Lec 20: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

HW 3 out: cache simulation
— Recitations this week on debugging C
— Due Nov 61

HW 4: smash the stack
— Out Nov 6t
— Due Nov 14th

PA 3 out Nov 14t
— Due Nov 25t (feel free to turn it in early)
— Demos and pizza party: Dec 1st or 2nd

Prelim 2: Dec 4th

Final project: distributed multicore ray tracer
— Due exam week

© Kavita Bala, Computer Science, Cornell University




How to make it work?

» Challenge: Virtual Memory can be slow!

e At run-time: virtual address must be translated to a
physical address

* MMU (combination of hardware and software)

Physical
virtual addrs addrs
CPU . l [ mmu F l .| memory

© Kavita Bala, Computer Science, Cornell University

Address Translation

 How to translate addresses?
—Per word? Much too expensive
—Per block? Sure, but what is block size?

» Costs dictate granularity of translation
— Cost to disk is very large

— Block size has to be large too
= Amortization

© Kavita Bala, Computer Science, Cornell University




Page Table

» Each process has separate mapping of
virtual to physical pages

» Page Table: stores this translation
— Basically a huge array of translations

© Kavita Bala, Computer Science, Cornell University

Address Translation

» S0 each memory request first requires an
address translation from the virtual space
to the physical space

Virtual Address (VA

31 30 L 12 11 C 0
| Virtual page number Page offset

Physical page number | Page offset |

29 C 12 11 0

Physical Address (PA)

© Kavita Bala, Computer Science, Cornell University




Page Table for Translation

Vlirtual page #I Offset

I|3hvsical page # l

Physica
base &

|
Offset

page
ddr

P

olklolkrloklklklklkk<

/\Q(w 0

Page Table

(in main memory)

Main memory

swap
space

© Kavita Bala, Computer Science, Cornell University DiSk storage

Virtual Addressing with a Cache

* Thus it takes an extra memory access to

translate a VA to a PA

CPU

VA

Trans-
lation

PA

miss

|

data

Cache

Main
Memory

[

1

* This makes memory (cache) accesses
very expensive (if every access was really
two accesses)

© Kavita Bala, Computer Science, Cornell University




Translation Lookaside Buffer (TLB)

Page Table has to be in main memory

But still too slow
What's our solution? A cache of course

Hardware: TLB

A small cache of recently used address
mappings
— TLB hit: avoid a page table lookup

© Kavita Bala, Computer Science, Cornell University

Making Address Translation Fast

Virtual page # Physical page
V__ Tag base addr
1 .
1 o\
1 O\
0 A\ \
1 ARNAN
TLB
Physical page

V__ base addr

1 L

1 —— |

1 [

1

1 ol

1 o~

O ‘\/

1] e 7 Main memory

0 -

1 o«

0 .\

Page Table
(in physical memory)
© Kavita Bala, Computer Science, Cornell University DISk storage




Translation Lookaside Buffers (TLBS)

e TLB can be organized as fully associative,
set associative, or direct mapped

— Typically fully associative
V | Virtual Page # | Physical Page # | Dirty | Ref

» TLB access time is typically smaller than
cache access time
— Because TLBs are much smaller than caches
— Typically not more than 64 to 512 entries
— CPU pipeline speed: small/fast

© Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

hit )
VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit
Trans-
lation
— data
e A TLB miss:

— If page in main memory, TLB miss can be
handled (in hardware or software)

= Load from the page table into the TLB
= Takes 10’s of cycles

© Kavita Bala, Computer Science, Cornell University




A TLB in the Memory Hierarchy

VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit
Trans-
lation
[R— data

e A TLB miss:

— If the page is not in main memory
= Page fault!
= Takes 1,000,000’s of cycles to service a page fault
* TLB misses are much more frequent than
true page faults

© Kavita Bala, Computer Science, Cornell University

Virtual address
31 30 29 14 13 12 11 10 923 2 1 0
— Virtual page numbar Page offset l
20 412
Valid Dirty Tag Physical page number
ne Su
TLB hit =& =)=
[Cham
(SR
20
Physical page number [ Page offset
Physical address
Physical address lag | Cache index sflfus[:‘E OBr;f;;
.|JB ,F: 4 .}2
8
12 Dat
Valid Tag
Cache

Cache hit = I




Virtual address

TLB miss

exception
Physical address

Write access
biton?

Try to write data
1o cache

Cache miss stall
while read block

Write protection
Yes exception

Deliver data
lothe CPU

Yes

Cache miss stall
while read block

Write data Into cache,
update the dirty bit, and
put the data and the
address into the write buffer

EOAmt Domme " 1600

Remove TLB from critical path?

A virtually addressed cache would only
require address translation on cache
misses

VA - PA
rans- Main
CPU lation Memory
Cache
hitr '—[
data

© Kavita Bala, Computer Science, Cornell University




Virtual vs. Physical Caches

addr Cache Memory
CPU ; MMU q  SrAMm > DRAM
data
Cache works on physical addresses
pddr =3 Memory
CPU MMU
> DRAM
Cache works on virtual addresses

* L1 (on-chip) caches are typically virtual
» L2 (off-chip) caches are typically physical

© Kavita Bala, Computer Science, Cornell University

Paging

page is on
backing store

3

load M

= W

\\‘"‘H—-..____,_,———/
operating
system @
referance trap
e | i
restart page table
instruction)
free frame o
® @
reset page bring in
table missing page
physical
memary

W navild bdid, LUIHpuULel dUietve, CUITIEN UTIVETSILY




