Lec 18: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

Announcements

HW 3 out: cache simulation
— Recitations this week on C/Unix/etc.
— Due Nov 6t

HW 4 out on Nov 5t
— Due Nov 14th

PA 3 out Nov 14t

— Due Nov 25t (feel free to turn it in early)
— Demos and pizza party: Dec 1st or 2nd

Prelim 2: Dec 4th

Final project: Due exam week

© Kavita Bala, Computer Science, Cornell University

2-Way Set-Associative Cache
V Tag Block V Tag Block

—ANNN NERLRRINNN

Il i

© Kavita BalbwCompute~Se Cornellliai it *

Cache Design

* Need to determine parameters
— Block size
— Number of ways of set-associativity
— Eviction policy
— Write policy
— Separate I-cache from D-cache

© Kavita Bala, Computer Science, Cornell University

Tradeoff

o Larger sizes reduce the overhead by
» Reducing the number of tags
» Reducing the size of each tag

e But
— Have fewer blocks available
— And the time to fetch the block on a miss is

longer
© Kavita Bala, Computer Science, Cornell University
Cache Writes
(el Cache
CPU — SRUNY =—> [Memory
data DRAM
* No-Write

— writes invalidate the cache and go to memory
* Write-Through
— writes go to main memory and cache

* Write-Back

— write cache, write main memory only when block is evicted

© Kavita Bala, Computer Science, Cornell University

What about Stores?

* Where should you write the result of a store?

— If that memory location is in the cache?
= Send it to the cache
= Should we also send it to memory right away?
(write-through policy)
= Wait until we kick the block out (write-back policy)
— Ifitis not in the cache?

= Allocate the line (put it in the cache)?
(write allocate policy)

= Write it directly to memory without allocation?
(no write allocate policy)

© Kavita Bala, Computer Science, Cornell University

Write-through vs. Write-back

* Write-through is slower
— But cleaner (memory always consistent)

* Write-back is faster

— But complicated when multi cores sharing
memory

© Kavita Bala, Computer Science, Cornell University

Dirty Bits and Write-Back Buffers

Tag| DataByte O, Bytel ... ByteN

Line

R[] <
olrlo| T

Dirty bits indicate which lines have been written

Dirty bits enable the cache to handle multiple writes to
the same cache line without having to go to memory

Dirty bit reset when line is allocated
Set when block is written

Write-back buffer
— A queue where dirty lines are placed
— Items added to the end as dirty lines are evicted from the cache
— Items removed from the front as memory writes are completed

© Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

e Complicated
— Time from start-to-end (wall-clock time)
— System time, user time
— CPI (Cycles per instruction)

e |deal CPI?

© Kavita Bala, Computer Science, Cornell University

Cache Performance

Consider hit (H) and miss ratio (M)
H X ATcache + M X ATmemory

Hit rate = 1 — Miss rate

Access Time is given in cycles

Ratio of Access times, 1:50

90% :.90 +.1x50 =59

95% :.95 +.05x50 =.95+2.5=3.45

99% :.99 +.01x50 1.49

99.9%: .999 + .001 x 50 = 0.999 + 0.05 =1.049

© Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate

Consider processor that is 2x times faster
— But memory is same speed

Since AT is access time in terms of cycle

time: it doubles 2x
H X ATcache + M X ATmemory
Ratio of Access times, 1:100

99% :.99 +.01x100 =1.99

© Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate

Original is 1GHz, 1ns is cycle time
CPI (cycles per instruction): 1.49
Therefore, 1.49 ns for each instruction

New is 2GHz, 0.5 ns is cycle time.
CPI: 1.99, 0.5ns. 0.995 ns for each instruction.

So it doesn’t go to 0.745 ns for each instruction.
Speedup is 1.5x (not 2x)

© Kavita Bala, Computer Science, Cornell University

Adding a L2 cache

CPI: 1.0, Clock: 2GHz
Access time is 100 ns
Miss rate: 2%

Say we add a L2 cache 5ns access time
— New Miss rate: 0.5%

© Kavita Bala, Computer Science, Cornell University

Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int al]NCOL][NROW];
int sum = 0;

for(j = 0;] < NCOL,; ++j)
for(i = 0; i < NROW, ++i)
sum += a[j][i];

» Speed up this program!

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

1 11
. 2 12
int alNCOL][NROW];
3 13
int sum = 0;
4 14
5 15
for(j = 0; j < NCOL; ++j) 6
for(i=0; i < NROW; ++i) |~
sum += a[j][if; s
9
10

* Every access is a cache miss!

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

112 |3 (4 (5 |6 |7 (8 [9 10

11 |12 | 13 (14 | 15

int al]NCOL][NROW];
int sum = 0;

for(i = 0; i < NROW; ++i)
for(j = 0; j < NCOL,; ++j)
sum += a[j][i];

Block size: 4, 75% hit rate

Block size: 8, 87.5% hit rate

Block size: 16, 93.75% hit rate

Or you can warm the cache... when does that make sense?

© Kavita Bala, Computer Science, Cornell University

Lec 18: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science

Cornell University

Processor & Memory

* Processor’s address
lines are routed via the
system bus to the

memory banks t

— Simple, fast

Ox7ffffft

Processor

« What happens when the
program issues a lw/sw
to an invalid location?
— e.g. 0x000000000 0x1000
— Or, uninitialized pointer

© Kavita Bala, Computer Science, Cornell University

Stack

Heap

Data

Text

Memory

10

Multiple Processes

* Mail, web browser, skype, ...
— Co-exist
= How? Take turns?
» Do they stomp on each other?

— Multiple processes must co-exist

* Many cores in a computer
— Multiple processors must co-exist

© Kavita Bala, Computer Science, Cornell University

Multiple Processors

* What happens
when another
program is
executed I_>
concurrently on
another processor?

— The addresses wiill
conflict

Ox7ffffff

Processors 0x1000

© Kavita Bala, Computer Science, Cornell University

Stack

Heap

Data

Text

Memory

11

Solution? Multiple processes/processors

 We could try to

relocate the second Stack
program to another ot ’
location Stac
— Assuming there is one Heap
— Introduces more Data
problems! Text
0x4000
= What if they don't fit
- g vy = H
Wh::_t if it is not Processors eap
(IIE(EH Iguous Data
u C.
0x1000 TeXt
Memory

© Kavita Bala, Computer Science, Cornell University

Virtual Memory

» Solves all these problems!

» Each process has its own view of memory
— Called virtual address space

— So can conceptually put your code, data in the
place you want it

e On-the-fly at runtime

— Need translation from virtual address space to
physical address space of machine

— Relocate loads and stores to actual memory

© Kavita Bala, Computer Science, Cornell University

12

Virtual address space Physical address space

0x00000000

0x00010000

0x 10000000

Ox THF

text

\ 0x00000000

stack

Ox 00t

[] page belonging to process

D page not belonging to process

© Kavita Bala, Computer Science, Cornell University

Two Programs Sharing Physical Memory

» The starting location of each page (either in
main memory or in secondary memory) is
contained in the program’s page table

swap
space

Program 1

virtual address space

\

2 main memory
—*

o——%—/'

L

Program 2
irtual address sp.

~

«
«
e

© Kavita Bala, Computer Science, Cornell University

13

Address Space

* Interface
— Programs load/store to virtual addresses
— Actual memory uses physical addresses

 Memory Management Unit (MMU)

Virtual Address Physical Address
View View

,Los |

Virtual Memory Advantages

» Easy relocation

— Simplifies loading a program for execution by
providing for code relocation (i.e., the code
can be loaded anywhere in main memory)

— Also, illusion of contiguous memory

« Easy sharing

— Allows efficient and safe sharing of memory
among multiple programs/multiple cores

© Kavita Bala, Computer Science, Cornell University

14

Virtual Memory Advantages

« Can run programs larger than physical
memory
— “Virtualization”

— Use main memory as a “cache” for secondary
memory: illusion of large memory

— Based on Principle of Locality

= The 90/10 rule

= A program is likely to access a relatively small
portion of its address space during any period of
time

© Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages

* Virtualization
— CPU: if process is not doing anything, switch

— Memory: when not using it, somebody else
can use it

© Kavita Bala, Computer Science, Cornell University

15

How to make it work?

» Challenge: Virtual Memory can be slow!

e At run-time: virtual address must be translated to a
physical address

* MMU (combination of hardware and software)

Physical
virtual addrs addrs
CPU . l [mmu F l .| memory

© Kavita Bala, Computer Science, Cornell University

Address Translation

 How to translate addresses?
—Per word? Much too expensive
—Per block? Sure, but what is block size?

» Costs dictate granularity of translation
— Cost to disk is very large

— Block size has to be large too
= Amortization

© Kavita Bala, Computer Science, Cornell University

16

Paging

» Divide memory into small pages

» A program’s address space is divided into
pages (all one fixed size)
— Typical: 4KB to 16KB
— Example:
= virtual address space: 232 = 4GB =4 x 2”30
= physical address space: 512 MB or 1 GB
= page size: 4KB
= Number of pages in memory: 2*18
= Number of page table entries: 220
= Page Table size = 4MB

© Kavita Bala, Computer Science, Cornell University

Page Table

» Each process has separate mapping of
virtual to physical pages

» Page Table: stores this translation
— Basically a huge array of translations

© Kavita Bala, Computer Science, Cornell University

17

Address Translation

» S0 each memory request first requires an
address translation from the virtual space
to the physical space

Virtual Address (VA)
31 30 L

12 11 C 0

| Virtual page number Page offset
Physical page number | Page offset |
29 R 12 11 0

Physical Address (PA)

© Kavita Bala, Computer Science, Cornell University

Page Table for Translation

Vlirtual page #I Offset |

I|3hvsical page # l

Physical page
base addr

|
Offset

<

//

Main memory

/'\M(\‘I'W

swap

Page Table Space
(in main memory)

© Kavita Bala, Computer Science, Cornell University DiSK storage

