
1

Lec 18: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 3 out: cache simulation

– Recitations this week on C/Unix/etc.
– Due Nov 6th

• HW 4 out on Nov 5th

– Due Nov 14th

• PA 3 out Nov 14th

– Due Nov 25th (feel free to turn it in early)
– Demos and pizza party: Dec 1st or 2nd

• Prelim 2: Dec 4th

• Final project: Due exam week

2

© Kavita Bala, Computer Science, Cornell University

2-Way Set-Associative Cache
O

ffs
et

 I
nd

ex

 T

ag
V Tag Block

=

V Tag Block

=

© Kavita Bala, Computer Science, Cornell University

Cache Design
• Need to determine parameters

– Block size
– Number of ways of set-associativity
– Eviction policy
– Write policy
– Separate I-cache from D-cache

3

© Kavita Bala, Computer Science, Cornell University

Tradeoff

• Larger sizes reduce the overhead by
Reducing the number of tags
Reducing the size of each tag

• But
– Have fewer blocks available
– And the time to fetch the block on a miss is

longer

© Kavita Bala, Computer Science, Cornell University

Cache Writes

• No-Write
– writes invalidate the cache and go to memory

• Write-Through
– writes go to main memory and cache

• Write-Back
– write cache, write main memory only when block is evicted

CPU
Cache
SRAM

Memory
DRAM

addr

data

4

© Kavita Bala, Computer Science, Cornell University

What about Stores?
• Where should you write the result of a store?

– If that memory location is in the cache?
Send it to the cache
Should we also send it to memory right away?
(write-through policy)
Wait until we kick the block out (write-back policy)

– If it is not in the cache?
Allocate the line (put it in the cache)?
(write allocate policy)
Write it directly to memory without allocation?
(no write allocate policy)

© Kavita Bala, Computer Science, Cornell University

Write-through vs. Write-back

• Write-through is slower
– But cleaner (memory always consistent)

• Write-back is faster
– But complicated when multi cores sharing

memory

5

© Kavita Bala, Computer Science, Cornell University

Dirty Bits and Write-Back Buffers

• Dirty bits indicate which lines have been written
• Dirty bits enable the cache to handle multiple writes to

the same cache line without having to go to memory
• Dirty bit reset when line is allocated
• Set when block is written
• Write-back buffer

– A queue where dirty lines are placed
– Items added to the end as dirty lines are evicted from the cache
– Items removed from the front as memory writes are completed

Tag Data Byte 0, Byte 1 … Byte N

Line

V D

0

0
1

1
1
1

© Kavita Bala, Computer Science, Cornell University

Short Performance Discussion

• Complicated
– Time from start-to-end (wall-clock time)
– System time, user time
– CPI (Cycles per instruction)

• Ideal CPI?

6

© Kavita Bala, Computer Science, Cornell University

Cache Performance
• Consider hit (H) and miss ratio (M)
• H x ATcache + M x ATmemory
• Hit rate = 1 – Miss rate
• Access Time is given in cycles
• Ratio of Access times, 1:50

• 90% : .90 + .1 x 50 = 5.9
• 95% : .95 + .05 x 50 = .95+2.5=3.45
• 99% : .99 + .01 x 50 = 1.49
• 99.9%: .999 + .001 x 50 = 0.999 + 0.05 = 1.049

© Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate
• Consider processor that is 2x times faster

– But memory is same speed

• Since AT is access time in terms of cycle
time: it doubles 2x

• H x ATcache + M x ATmemory

• Ratio of Access times, 1:100
• 99% : .99 + .01 x 100 = 1.99

7

© Kavita Bala, Computer Science, Cornell University

Cache Hit/Miss Rate
• Original is 1GHz, 1ns is cycle time
• CPI (cycles per instruction): 1.49
• Therefore, 1.49 ns for each instruction

• New is 2GHz, 0.5 ns is cycle time.
• CPI: 1.99, 0.5ns. 0.995 ns for each instruction.

• So it doesn’t go to 0.745 ns for each instruction.
• Speedup is 1.5x (not 2x)

© Kavita Bala, Computer Science, Cornell University

Adding a L2 cache

• CPI: 1.0, Clock: 2GHz
• Access time is 100 ns
• Miss rate: 2%

• Say we add a L2 cache 5ns access time
– New Miss rate: 0.5%

8

© Kavita Bala, Computer Science, Cornell University

Misses
• Three types of misses

– Cold
The line is being referenced for the first time

– Capacity
The line was evicted because the cache was not
large enough

– Conflict
The line was evicted because of another access
whose index conflicted

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j)
for(i = 0; i < NROW; ++i)

sum += a[j][i];

• Speed up this program!

9

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

• Every access is a cache miss!

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j)
for(i = 0; i < NROW; ++i)

sum += a[j][i];

10

9

8

7

6

155

144

133

122

111

© Kavita Bala, Computer Science, Cornell University

Cache Conscious Programming

• Block size: 4, 75% hit rate
• Block size: 8, 87.5% hit rate
• Block size: 16, 93.75% hit rate
• Or you can warm the cache… when does that make sense?

int a[NCOL][NROW];
int sum = 0;

for(i = 0; i < NROW; ++i)
for(j = 0; j < NCOL; ++j)

sum += a[j][i];

1514131211

10987654321

10

Lec 18: Virtual Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Processor & Memory

• Processor’s address
lines are routed via the
system bus to the
memory banks
– Simple, fast

• What happens when the
program issues a lw/sw
to an invalid location?
– e.g. 0x000000000
– Or, uninitialized pointer

Processor

Text

Data

Stack

Heap

Memory

0x1000

0x7fffffff

11

© Kavita Bala, Computer Science, Cornell University

Multiple Processes

• Mail, web browser, skype, …
– Co-exist

How? Take turns?
Do they stomp on each other?

– Multiple processes must co-exist

• Many cores in a computer
– Multiple processors must co-exist

© Kavita Bala, Computer Science, Cornell University

Multiple Processors

• What happens
when another
program is
executed
concurrently on
another processor?
– The addresses will

conflict Processors
Text

Data

Stack

Heap

Memory

0x1000

0x7fffffff

Text

Data

Stack

Heap

12

© Kavita Bala, Computer Science, Cornell University

Solution? Multiple processes/processors

• We could try to
relocate the second
program to another
location
– Assuming there is one
– Introduces more

problems!
What if they don’t fit
What if it is not
contiguous
Etc.

Processors

Text

Data

Stack

Heap

Memory
0x1000

0x7fffffff

Text
Data

Stack

Heap

0x4000

© Kavita Bala, Computer Science, Cornell University

Virtual Memory
• Solves all these problems!

• Each process has its own view of memory
– Called virtual address space
– So can conceptually put your code, data in the

place you want it
• On-the-fly at runtime

– Need translation from virtual address space to
physical address space of machine

– Relocate loads and stores to actual memory

13

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

• The starting location of each page (either in
main memory or in secondary memory) is
contained in the program’s page table

Program 2
virtual address space

swap
space

14

© Kavita Bala, Computer Science, Cornell University

Address Space

• Interface
– Programs load/store to virtual addresses
– Actual memory uses physical addresses

• Memory Management Unit (MMU)

© Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages
• Easy relocation

– Simplifies loading a program for execution by
providing for code relocation (i.e., the code
can be loaded anywhere in main memory)

– Also, illusion of contiguous memory

• Easy sharing
– Allows efficient and safe sharing of memory

among multiple programs/multiple cores

15

© Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages

• Can run programs larger than physical
memory
– “Virtualization”
– Use main memory as a “cache” for secondary

memory: illusion of large memory
– Based on Principle of Locality

The 90/10 rule
A program is likely to access a relatively small
portion of its address space during any period of
time

© Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages
• Virtualization

– CPU: if process is not doing anything, switch
– Memory: when not using it, somebody else

can use it

16

© Kavita Bala, Computer Science, Cornell University

How to make it work?
• Challenge: Virtual Memory can be slow!
• At run-time: virtual address must be translated to a

physical address
• MMU (combination of hardware and software)

© Kavita Bala, Computer Science, Cornell University

Address Translation

• How to translate addresses?
– Per word? Much too expensive
– Per block? Sure, but what is block size?

• Costs dictate granularity of translation
– Cost to disk is very large
– Block size has to be large too

Amortization

17

© Kavita Bala, Computer Science, Cornell University

Paging
• Divide memory into small pages
• A program’s address space is divided into

pages (all one fixed size)
– Typical: 4KB to 16KB
– Example:

virtual address space: 2^32 = 4GB = 4 x 2^30
physical address space: 512 MB or 1 GB
page size: 4KB
Number of pages in memory: 2^18
Number of page table entries: 2^20
Page Table size = 4MB

© Kavita Bala, Computer Science, Cornell University

Page Table

• Each process has separate mapping of
virtual to physical pages

• Page Table: stores this translation
– Basically a huge array of translations

18

© Kavita Bala, Computer Science, Cornell University

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an
address translation from the virtual space
to the physical space

© Kavita Bala, Computer Science, Cornell University

Page Table for Translation

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table
(in main memory)

Offset

Physical page #

Offset

swap
space

