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Computer Science
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Announcements

• Prelim: graded 
• PA 2: graded
• HW 2: graded

• HW 3 out tonight: cache simulation
– Recitations this week on C/Unix/etc.
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Memory pyramid

Disk (Many GB)

Memory (128MB – few GB)

L2 Cache  (½-32MB)

L1 Cache
(several KB)

Reg
100s bytes

Cache Design 101

1 cycle access (early in pipeline)

1-3 cycle access

5-15 cycle access

50-300 cycle access

L3 becoming more 
common
(sometimes VERY
LARGE)

These are rough numbers: mileage may vary for latest/greatestThese are rough numbers: mileage may vary for latest/greatest
Caches USUALLY made of SRAMCaches USUALLY made of SRAM

Millions cycle access!
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Insight of Caches
• Exploit locality

– Two types: temporal and spatial 
• Temporal locality

– If memory location X is accessed, then it is more likely to be 
accessed again in the near future than some random location Y

– Caches exploit temporal locality by placing a memory element 
that has been referenced into the cache

• Spatial locality
– If memory location X is accessed, then locations near X are more

likely to be accessed in the near future than some random 
location Y

– Caches exploit spatial locality by allocating a cache line of data 
(including data near the referenced location)
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Cache Lookups (Read)
• Look at address issued by processor
• Search cache to see if that block is in the 

cache
– Hit: Block is in the cache

return requested data
– Miss: Block is not in the cache

read line from memory
evict an existing line from the cache
place new line in cache
return requested data
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Fully Associative Cache
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Cache Organization
• Three common designs

– Fully associative: Block can be anywhere in 
the cache

– Direct mapped: Block can only be in one line 
in the cache

– Set-associative: Block can be in a few (2 to 8) 
places in the cache
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Eviction
• Which cache line should be evicted from 

the cache to make room for a new line?
– Direct-mapped

no choice, must evict line selected by index
– Associative caches

random: select one of the lines at random
round-robin: similar to random
FIFO: replace oldest line
LRU: replace line that has not been used in the 
longest time
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Compromise
• Set-associative cache

• Like a direct-mapped cache
– Index into a location
– Fast

• Like a fully-associative cache
– Can store multiple entries 

decreases thrashing in cache
– Search in each element
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2-Way Set-Associative Cache
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Ld  R1 ← M[   1   ]
Ld  R2 ← M[   5   ]
Ld  R3 ← M[   1   ]
Ld  R3 ← M[   4   ]
Ld  R2 ← M[   0   ]
Ld  R2 ← M[ 12   ]
Ld  R2 ← M[   5   ]
Ld  R2 ← M[ 12  ]
Ld  R2 ← M[   5  ]
Ld  R2 ← M[ 12  ]
Ld  R2 ← M[   5  ]
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Ld  R1 ← M[   1   ]
Ld  R2 ← M[   5   ]
Ld  R3 ← M[   1   ]
Ld  R3 ← M[   4   ]
Ld  R2 ← M[   0   ]
Ld  R2 ← M[ 12   ]
Ld  R2 ← M[   5   ]
Ld  R2 ← M[  12  ]
Ld  R2 ← M[   5  ]
Ld  R2 ← M[ 12   ]
Ld  R2 ← M[   5   ]
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2 Way Set Assoc
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Ld  R1 ← M[   1   ]
Ld  R2 ← M[   5   ]
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Ld  R3 ← M[   4   ]
Ld  R2 ← M[   0   ]
Ld  R2 ← M[ 12   ]
Ld  R2 ← M[   5   ]
Ld  R2 ← M[  12  ]
Ld  R2 ← M[   5  ]
Ld  R2 ← M[ 12   ]
Ld  R2 ← M[   5   ]
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Cache Design
• Need to determine parameters

– Block size
– Number of ways of set-associativity
– Eviction policy
– Write policy
– Separate I-cache from D-cache
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Basic Cache Organization
Decide on the block size

– How?  Simulate lots of different block sizes 
and see which one gives the best 
performance

– Most systems use a block size between 32 
bytes and 128 bytes

Tag Block
OffsetIndex
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Tradeoff

• Larger sizes reduce the overhead by
Reducing the number of tags
Reducing the size of each tag 

• But
– Have fewer blocks available
– And the time to fetch the block on a miss is 

longer
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Valid Bits
• Valid bits indicate whether cache line 

contains an up-to-date copy of the values 
in memory
– Must be 1 for a hit
– Reset to 0 on power up

• An item can be removed from the cache by 
setting its valid bit to 0
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Eviction
• Which cache line should be evicted from 

the cache to make room for a new line?
– Direct-mapped

no choice, must evict line selected by index
– Associative caches

random: select one of the lines at random
round-robin: similar to random
FIFO: replace oldest line
LRU: replace line that has not been used in the 
longest time
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Cache Writes

• No-Write
– writes invalidate the cache and go to memory

• Write-Through
– writes go to main memory and cache

• Write-Back
– write cache, write main memory only when block is evicted 

CPU
Cache
SRAM

Memory
DRAM

addr

data
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What about Stores?
• Where should you write the result of a store?

– If that memory location is in the cache?
Send it to the cache
Should we also send it to memory right away?
(write-through policy)
Wait until we kick the block out (write-back policy)

– If it is not in the cache?
Allocate the line (put it in the cache)?
(write allocate policy)
Write it directly to memory without allocation?
(no write allocate policy)
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Handling Stores (Write-Through)
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Write-Through (REF 1)
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Write-Through (REF 1)
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Write-Through (REF 2)
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Write-Through (REF 2)
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Write-Through (REF 3)
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Write-Through (REF 3)
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Write-Through (REF 4)
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Write-Through (REF 4)
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© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 5)
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Write-Through (REF 5)
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Write-Through (REF 6)
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Write-Through (REF 7)
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How Many Memory References?
• Each miss reads a block 

(only two words in this cache)
• Each store writes a word
• Total reads: eight words
• Total writes: four words

but caches generally miss < 20%
usually much lower miss rates . . . but depends 
on both cache and application!
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Write-Through (REF 7)
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How Many Memory References?
• Each miss reads a block 

(only two words in this cache)
• Each store writes a word
• Total reads: eight words
• Total writes: six words, eight words, etc.

but caches generally miss < 20%
usually much lower miss rates . . . but depends 
on both cache and application!
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Write-Through vs. Write-Back
Can we also design the cache NOT to write 

all stores immediately to memory?
– Keep the most current copy in cache, and 

update memory when that data is evicted 
(write-back policy)

– Do we need to write-back all evicted lines?
– No, only blocks that have been stored into 

(written)
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Dirty Bits and Write-Back Buffers

• Dirty bits indicate which lines have been written
• Dirty bits enable the cache to handle multiple writes to 

the same cache line without having to go to memory
• Dirty bit reset when line is allocated
• Set when block is written
• Write-back buffer

– A queue where dirty lines are placed
– Items added to the end as dirty lines are evicted from the cache
– Items removed from the front as memory writes are completed

Tag Data Byte 0, Byte 1  … Byte N

Line

V D

0

0
1

1
1
1
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Handling Stores (Write-Back)
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Write-Back (REF 1)
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Write-Back (REF 1)
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0
V d  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

01

0lr
u 29

78

29

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[ 7 ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses:   1
Hits: 0

01

0lr
u 29

78

29

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10  ]
St   R1 → M[   5 ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[ 7 ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10  ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[ 5 ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[ 5 ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10  ]
St   R1 → M[   5   ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]



26

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

173

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

5
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 2

0

1

1

1lr
u

29

29
71

33
28

33

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 6)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]

CacheProcessor

5
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 3

0

1

1

1lr
u

29

29
71

33
28

33

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[ 10 ]
St   R1 → M[   5   ]

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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Write-Back (REF 7)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 4

1

1

1

1lr
u

29

29
71

29
28

33

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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How many memory references?
• Each miss reads a block 

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: six words
• Total writes: 4/6 words (after final eviction)
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Write-Back (REF 8,9)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   3
Hits: 4

1

1

1

1lr
u

29

29
71

29
28

33

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
St   R1 → M[   5   ]
St   R1 → M[  10  ]
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How many memory references?
• Each miss reads a block 

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: six words
• Total writes: 4/6 words (after final eviction)
• By comparison write-through was 

– Reads: eight words
– Writes: 6/8/10 etc words

• Write-through or Write-back?

© Kavita Bala, Computer Science, Cornell University

Write-through vs. Write-back

• Write-through is slower
– But cleaner (memory always consistent)

• Write-back is faster
– But complicated when multi cores sharing 

memory


