
1

Lec 17: Caches

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• Prelim: graded
• PA 2: graded
• HW 2: graded

• HW 3 out tonight: cache simulation
– Recitations this week on C/Unix/etc.

2

© Kavita Bala, Computer Science, Cornell University

Memory pyramid

Disk (Many GB)

Memory (128MB – few GB)

L2 Cache (½-32MB)

L1 Cache
(several KB)

Reg
100s bytes

Cache Design 101

1 cycle access (early in pipeline)

1-3 cycle access

5-15 cycle access

50-300 cycle access

L3 becoming more
common
(sometimes VERY
LARGE)

These are rough numbers: mileage may vary for latest/greatestThese are rough numbers: mileage may vary for latest/greatest
Caches USUALLY made of SRAMCaches USUALLY made of SRAM

Millions cycle access!

© Kavita Bala, Computer Science, Cornell University

Insight of Caches
• Exploit locality

– Two types: temporal and spatial
• Temporal locality

– If memory location X is accessed, then it is more likely to be
accessed again in the near future than some random location Y

– Caches exploit temporal locality by placing a memory element
that has been referenced into the cache

• Spatial locality
– If memory location X is accessed, then locations near X are more

likely to be accessed in the near future than some random
location Y

– Caches exploit spatial locality by allocating a cache line of data
(including data near the referenced location)

3

© Kavita Bala, Computer Science, Cornell University

Cache Lookups (Read)
• Look at address issued by processor
• Search cache to see if that block is in the

cache
– Hit: Block is in the cache

return requested data
– Miss: Block is not in the cache

read line from memory
evict an existing line from the cache
place new line in cache
return requested data

© Kavita Bala, Computer Science, Cornell University

Direct Mapped Cache

O
ffs

et

 I

nd
ex

 T
ag

V Tag Block

=

4

© Kavita Bala, Computer Science, Cornell University

Fully Associative Cache
O

ffs
et

Ta
g

Tag Block

=

=

line
select

word/byte
select

hit encode

V

© Kavita Bala, Computer Science, Cornell University

Cache Organization
• Three common designs

– Fully associative: Block can be anywhere in
the cache

– Direct mapped: Block can only be in one line
in the cache

– Set-associative: Block can be in a few (2 to 8)
places in the cache

5

© Kavita Bala, Computer Science, Cornell University

Eviction
• Which cache line should be evicted from

the cache to make room for a new line?
– Direct-mapped

no choice, must evict line selected by index
– Associative caches

random: select one of the lines at random
round-robin: similar to random
FIFO: replace oldest line
LRU: replace line that has not been used in the
longest time

© Kavita Bala, Computer Science, Cornell University

Compromise
• Set-associative cache

• Like a direct-mapped cache
– Index into a location
– Fast

• Like a fully-associative cache
– Can store multiple entries

decreases thrashing in cache
– Search in each element

6

© Kavita Bala, Computer Science, Cornell University

2-Way Set-Associative Cache
O

ffs
et

 I
nd

ex

 T

ag
V Tag Block

=

V Tag Block

=

© Kavita Bala, Computer Science, Cornell University

Ld R1 ← M[1]
Ld R2 ← M[5]
Ld R3 ← M[1]
Ld R3 ← M[4]
Ld R2 ← M[0]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]

Direct Mapped

110

130

150
160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory
100

120

140

170

190

210

230

250

Misses: 4+2+2
Hits: 3

Cache

0
tag data

2

100
110

150
140

1

1

0

00

0
230
2201

0

180
190

150
140

110
100

4 cache lines
1 bit tag field
2 word block

7

© Kavita Bala, Computer Science, Cornell University

Ld R1 ← M[1]
Ld R2 ← M[5]
Ld R3 ← M[1]
Ld R3 ← M[4]
Ld R2 ← M[0]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]

Fully Assoc

110

130

150
160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory
100

120

140

170

190

210

230

250

Misses: 3
Hits: 8

Cache

0
tag data

2

100
110

150
140

1

1

1

0

6 220
230

4 cache lines
3 bit tag field
2 word block

© Kavita Bala, Computer Science, Cornell University

2 Way Set Assoc

110

130

150
160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory
100

120

140

170

190

210

230

250

Misses: 4
Hits: 7

Cache

tag data
0

0

0

0

2 sets
2 bit tag field
2 word block

Ld R1 ← M[1]
Ld R2 ← M[5]
Ld R3 ← M[1]
Ld R3 ← M[4]
Ld R2 ← M[0]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]
Ld R2 ← M[12]
Ld R2 ← M[5]

8

© Kavita Bala, Computer Science, Cornell University

Cache Design
• Need to determine parameters

– Block size
– Number of ways of set-associativity
– Eviction policy
– Write policy
– Separate I-cache from D-cache

© Kavita Bala, Computer Science, Cornell University

Basic Cache Organization
Decide on the block size

– How? Simulate lots of different block sizes
and see which one gives the best
performance

– Most systems use a block size between 32
bytes and 128 bytes

Tag Block
OffsetIndex

9

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Tradeoff

• Larger sizes reduce the overhead by
Reducing the number of tags
Reducing the size of each tag

• But
– Have fewer blocks available
– And the time to fetch the block on a miss is

longer

10

© Kavita Bala, Computer Science, Cornell University

Valid Bits
• Valid bits indicate whether cache line

contains an up-to-date copy of the values
in memory
– Must be 1 for a hit
– Reset to 0 on power up

• An item can be removed from the cache by
setting its valid bit to 0

© Kavita Bala, Computer Science, Cornell University

Eviction
• Which cache line should be evicted from

the cache to make room for a new line?
– Direct-mapped

no choice, must evict line selected by index
– Associative caches

random: select one of the lines at random
round-robin: similar to random
FIFO: replace oldest line
LRU: replace line that has not been used in the
longest time

11

© Kavita Bala, Computer Science, Cornell University

Cache Writes

• No-Write
– writes invalidate the cache and go to memory

• Write-Through
– writes go to main memory and cache

• Write-Back
– write cache, write main memory only when block is evicted

CPU
Cache
SRAM

Memory
DRAM

addr

data

© Kavita Bala, Computer Science, Cornell University

What about Stores?
• Where should you write the result of a store?

– If that memory location is in the cache?
Send it to the cache
Should we also send it to memory right away?
(write-through policy)
Wait until we kick the block out (write-back policy)

– If it is not in the cache?
Allocate the line (put it in the cache)?
(write allocate policy)
Write it directly to memory without allocation?
(no write allocate policy)

12

© Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Through)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

V tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 0
Hits: 0

0

0

Assume write-allocate
policy

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

V tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 0
Hits: 0

0

0

13

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 1
Hits: 0

lru

1

0
29
78

29

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 1
Hits: 0

lru

1

0
29
78

29

14

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 0

lru 1

1
29
78

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 0

lru 1

1
29
78

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

15

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

3

120

71

173

21

28

200

225

Misses: 2
Hits: 1

lru

1

1
29

29

162
173

173

173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

3

173

120

71

173

21

28

200

225

Misses: 2
Hits: 1

lru

1

1
29
173

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

16

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 3
Hits: 1

lru 1

1
29
173

29
173

150
71
29

29
Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 5)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 3
Hits: 1

lru 1

1
29
173

29
173

29
71

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

17

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 5)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

5
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 4
Hits: 1

lru

1

1

29

29
71

33
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 6)

29

123

29
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

5
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 4
Hits: 2

lru

1

1

29

29
71

33
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

29

29

18

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 7)

29

123

29
162

18

29

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

5
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 4
Hits: 3

lru

1

1

29

29
71

29
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

29

29

© Kavita Bala, Computer Science, Cornell University

How Many Memory References?
• Each miss reads a block

(only two words in this cache)
• Each store writes a word
• Total reads: eight words
• Total writes: four words

but caches generally miss < 20%
usually much lower miss rates . . . but depends
on both cache and application!

19

© Kavita Bala, Computer Science, Cornell University

Write-Through (REF 7)

29

123

29
162

18

29

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V tag data

R0
R1
R2
R3

Memory

2

173

120

71

173

21

28

200

225

Misses: 4
Hits: 3

lru

1

1

29

29
71

29
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]
St R1 → M[5]
St R1 → M[10]

29

29

29

29

© Kavita Bala, Computer Science, Cornell University

How Many Memory References?
• Each miss reads a block

(only two words in this cache)
• Each store writes a word
• Total reads: eight words
• Total writes: six words, eight words, etc.

but caches generally miss < 20%
usually much lower miss rates . . . but depends
on both cache and application!

20

© Kavita Bala, Computer Science, Cornell University

Write-Through vs. Write-Back
Can we also design the cache NOT to write

all stores immediately to memory?
– Keep the most current copy in cache, and

update memory when that data is evicted
(write-back policy)

– Do we need to write-back all evicted lines?
– No, only blocks that have been stored into

(written)

© Kavita Bala, Computer Science, Cornell University

Dirty Bits and Write-Back Buffers

• Dirty bits indicate which lines have been written
• Dirty bits enable the cache to handle multiple writes to

the same cache line without having to go to memory
• Dirty bit reset when line is allocated
• Set when block is written
• Write-back buffer

– A queue where dirty lines are placed
– Items added to the end as dirty lines are evicted from the cache
– Items removed from the front as memory writes are completed

Tag Data Byte 0, Byte 1 … Byte N

Line

V D

0

0
1

1
1
1

21

© Kavita Bala, Computer Science, Cornell University

Handling Stores (Write-Back)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

V d tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 0
Hits: 0

0

0

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

V d tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 0
Hits: 0

0

0

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

22

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 1)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 1
Hits: 0

01

0lr
u 29

78

29

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory
78

120

71

173

21

28

200

225

Misses: 1
Hits: 0

01

0lr
u 29

78

29

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

23

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 2)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

24

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

25

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 4)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 2
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

26

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

0
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 2

1

1

1

1

lr
u

29
173

29
173

29
71

173

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 5)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

5
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 2

0

1

1

1lr
u

29

29
71

33
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

27

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 6)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]

CacheProcessor

5
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 3

0

1

1

1lr
u

29

29
71

33
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 7)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 4

1

1

1

1lr
u

29

29
71

29
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]
St R1 → M[5]
St R1 → M[10]

28

© Kavita Bala, Computer Science, Cornell University

How many memory references?
• Each miss reads a block

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: six words
• Total writes: 4/6 words (after final eviction)

© Kavita Bala, Computer Science, Cornell University

Write-Back (REF 8,9)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CacheProcessor

5
V d tag data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses: 3
Hits: 4

1

1

1

1lr
u

29

29
71

29
28

33

Ld R1 ← M[1]
Ld R2 ← M[7]
St R2 → M[0]
St R1 → M[5]
Ld R2 ← M[10]
St R1 → M[5]
St R1 → M[10]
St R1 → M[5]
St R1 → M[10]

29

© Kavita Bala, Computer Science, Cornell University

How many memory references?
• Each miss reads a block

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: six words
• Total writes: 4/6 words (after final eviction)
• By comparison write-through was

– Reads: eight words
– Writes: 6/8/10 etc words

• Write-through or Write-back?

© Kavita Bala, Computer Science, Cornell University

Write-through vs. Write-back

• Write-through is slower
– But cleaner (memory always consistent)

• Write-back is faster
– But complicated when multi cores sharing

memory

