
1

Lec 13: Linking and Memory

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• PA 2 is out
– Due on Oct 22nd

• Prelim
– Oct 23rd, 7:30-9:30/10:00
– All content up to Lecture on Oct 16th

• Ask us questions if in doubt

2

© Kavita Bala, Computer Science, Cornell University

From Assembly to Running

© Kavita Bala, Computer Science, Cornell University

Big Picture

• Assembler output is obj files
– Not executable
– May refer to external symbols
– Each object file has its own address space

• Linker joins these object files into one
executable

• Loader brings it into memory and executes

3

© Kavita Bala, Computer Science, Cornell University

Object file
• Header

– Size and position of pieces of file

• Text Segment
– instructions

• Data Segment
– Static data

• Relocation Information
– Instructions and data that depend on absolute

addresses

• Symbol Table
– External and unresolved references

• Debugging Information

© Kavita Bala, Computer Science, Cornell University

References

• Global labels
– External: can be referenced from outside
– In example

Main

• Local labels

4

© Kavita Bala, Computer Science, Cornell University

Forward References
• Local labels can have forward references

• Two-pass assembly
– Do a pass through the whole program,

allocate instructions and lay out data, thus
determining addresses

– Do a second pass, emitting instructions and
data, with the correct label offsets now
determined

© Kavita Bala, Computer Science, Cornell University

Forward References
• One-pass (or backpatch) assembly

– Do a pass through the whole program,
emitting instructions, emit a 0 for jumps to
labels not yet determined, keep track of where
these instructions are

– Backpatch, fill in 0 offsets as labels are
defined

• Pros and cons
– Faster
– But need to hold whole program in memory

5

© Kavita Bala, Computer Science, Cornell University

Handling Forward References

• Example:
– bne $1, $2, L

sll $0, $0, 0
L: addiu $2, $3, 0x2

• The assembler will change this to
– bne $1, $2, +1

sll $0, $0, 0
addiu $2, $3, 0x2

© Kavita Bala, Computer Science, Cornell University

Handling Forward References

• Final machine code
– 0X14220001 # bne

0x00000000 # sll
0x24620002 # addiu

6

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
1. Operand: Register addressing

op rs rt rd funct Register
word operand

op rs rd offset
2. Operand: Base addressing

base register

Memory
word or byte operand

Eg: jr

Eg: lw, sw

© Kavita Bala, Computer Science, Cornell University

MIPS Addressing Modes
3. Operand: Immediate addressing

op rs rd operand

4. Instruction: PC-relative addressing
op rs rd offset

Program Counter (PC)

Memory
branch destination instruction

5. Instruction: Pseudo-direct addressing
op jump address

Program Counter (PC)

Memory
jump destination instruction||

Eg: j

Eg: beq, bne

7

© Kavita Bala, Computer Science, Cornell University

Separate Compilation

• Separately compiling modules and linking
them together removes the need to
recompile the whole program every time
something changes

• Need to just recompile a small module
• A linker coalesces object files together to

create a complete program

© Kavita Bala, Computer Science, Cornell University

Linker

8

© Kavita Bala, Computer Science, Cornell University

Linkers
• Combine object files into an executable

– Resolve symbols
– Creates final executable
– Relocate if needed
– Stores entry point in executable so processor

knows where to start executing

• End result: a program on disk, ready to
execute

© Kavita Bala, Computer Science, Cornell University

Executable File Structure
• Header
• Text Segment

– Instructions, ready to run as is
• Data Segment

– Static data

• Symbol Table
– Optional: for debugging

9

© Kavita Bala, Computer Science, Cornell University

File Formats

• Unix
– a.out format
– COFF: Common Object File Format
– ELF: Executable and Linking Format
– All support executable and object files

© Kavita Bala, Computer Science, Cornell University

Libraries

• Collection of object files

• Linker adds all object files necessary to
resolve undefined references

• User-specified order

10

© Kavita Bala, Computer Science, Cornell University

Shared Libraries

• Libraries take too much memory for many
applications

• Solution: share libraries

• Executable file
– Points to library code (jump table)
– Library compiled at fixed address

© Kavita Bala, Computer Science, Cornell University

Linkers

• Static linkers
– Doesn’t reflect changes
– Whole library (big)

• Dynamic linkers
– Dynamically linked libraries (dlls)
– Integrate code at runtime

One copy of shared library in memory
Load time cost

11

© Kavita Bala, Computer Science, Cornell University

Dynamic Shared Objects
• Unix

– Code compiled as dynamic shared object (DSO)
– A relocatable shared library
– Use ELF format
– Supports Position Independent Code (PIC)

Program determines its current address
Add constant offset to access local data
If data located in a different library, use indirection through a
Global Offset Table (GOT).
Address of GOT usually computed and stored in a register at
the beginning of each procedure

© Kavita Bala, Computer Science, Cornell University

Loaders

• Reads executable from disk
• Loads code and data into memory
• Initializes registers, stack, arguments
• Jumps to entry-point
• Part of the Operating System (OS)

12

Memory

© Kavita Bala, Computer Science, Cornell University

Caches And Memory

• Chapter 7 (H & P)

13

© Kavita Bala, Computer Science, Cornell University

Memory So Far

Big array of storage with more complex
indexing than registers
– Addressing modes help us access memory
– A[i]; use base + displacement

– Use less space in instruction than immediate
field

© Kavita Bala, Computer Science, Cornell University

SRAM vs. DRAM
• SRAM (static random access memory)

– Faster than DRAM
– Each storage cell is larger (4-6 transistors)
– So smaller capacity for same area
– 2-10ns access time

• DRAM (dynamic random access memory)
– Each storage cell tiny (capacitance on wire)
– Can get 1-2GB chips
– 50-150ns access time
– Leaky–needs to refresh data periodically

14

© Kavita Bala, Computer Science, Cornell University

Performance
• CPU clock rates ~0.2ns-2ns (5GHz-500MHz)

Technology Capacity Cost/GB Latency
Tape 1 TB $.17 100s
Disk 300 GB $.34 Millions cycles (ms)
DRAM 4GB $100s 50-300 cycles (10s of ns)
SRAM off 512KB $4-10’sk 5-15 cycles (few ns)
SRAM on 16 KB ??? 1-3 cycles (ns)

• Capacity and latency are closely coupled
• Cost is inversely proportional

• How do we create the illusion of large and fast memory?

© Kavita Bala, Computer Science, Cornell University

Memory Hierarchy
• Idea: Hide latency using small, fast memories

called caches

15

© Kavita Bala, Computer Science, Cornell University

Memory pyramid

Disk (Many GB)

Memory (128MB – few GB)

L2 Cache (½-32MB)

L1 Cache
(several KB)

Reg
100s bytes

Cache Design 101

1 cycle access (early in pipeline)

1-3 cycle access

5-15 cycle access

50-300 cycle access

L3 becoming more
common
(sometimes VERY
LARGE)

These are rough numbers: mileage may vary for latest/greatestThese are rough numbers: mileage may vary for latest/greatest
Caches USUALLY made of SRAMCaches USUALLY made of SRAM

Millions cycle access!

© Kavita Bala, Computer Science, Cornell University

Insight of Caches
• Exploit locality

– Two types: temporal and spatial
• Temporal locality

– If memory location X is accessed, then it is more likely to be
accessed again in the near future than some random location Y

– Caches exploit temporal locality by placing a memory element
that has been referenced into the cache

• Spatial locality
– If memory location X is accessed, then locations near X are more

likely to be accessed in the near future than some random
location Y

– Caches exploit spatial locality by allocating a cache line of data
(including data near the referenced location)

16

© Kavita Bala, Computer Science, Cornell University

Memory Hierarchy

• Closer to processor
– Subset of memory farther from processor
– Faster and smaller

– Transfer an entire block

© Kavita Bala, Computer Science, Cornell University

Cache Lookups (Read)
• Look at address issued by processor
• Search cache to see if that block is in the

cache
– Hit: Block is in the cache

return requested data
– Miss: Block is not in the cache

read line from memory
evict an existing line from the cache
place new line in cache
return requested data

