
1

Lec 12: Register Calling

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements

• PA 1 is due this Wed

• Ask us questions if in doubt

2

© Kavita Bala, Computer Science, Cornell University

Program Layout

• Programs consist of
segments used for different
purposes
– Text: holds instructions
– Data: holds statically allocated

program data such as
variables, strings, etc. add r1,r2,r3

ori r2, r4, 3
...

“cornell cs”
13
25

data

text

© Kavita Bala, Computer Science, Cornell University

When you run the program

3

© Kavita Bala, Computer Science, Cornell University

Assembling Programs

• Programs consist of a mix of
instructions, pseudo-ops
and assembler directives

• Assembler lays out binary
values in memory based on
directives

.text

.ent main
main: la $4, Larray

li $5, 15
...
li $4, 0
jal exit
.end main
.data

Larray:
.long 51, 491, 3991

© Kavita Bala, Computer Science, Cornell University

Procedures

• Enable code to be reused by allowing code
snippets to be invoked

• Will need a way to
– call the routine
– pass arguments to it

fixed length
variable length
Recursive calls

– return value to caller
– manage registers

4

© Kavita Bala, Computer Science, Cornell University

Call Stacks
• A call stack contains activation

records (aka stack frames)

• Each activation record contains
– the return address for that

invocation
– the local variables for that

procedure

sp

Laftercall1

Linside

high mem

low mem

© Kavita Bala, Computer Science, Cornell University

Take 3: JAL/JR with Activation Records

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

• Stack used to save and restore contents of $31

mult:
addiu sp,sp,-4
sw $31, 0(sp)
beq $4, $0, Lout
...
jal mult

Linside:
…

Lout:
lw $31, 0(sp)
addiu sp,sp,4
jr $31

5

© Kavita Bala, Computer Science, Cornell University

Many Arguments
• What if there

are more than
4 arguments?

• Use the stack
for the
additional
arguments
– “spill”

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
addiu sp,sp,-8
li $8, 4
sw $8, 0(sp)
li $8, 5
sw $8, 4(sp)
jal subf
// result in v0

sp
4

5

© Kavita Bala, Computer Science, Cornell University

Variable Length Arguments
• Best to use an (initially confusing but

ultimately simpler) approach:
– Pass the first four arguments in registers, as usual
– Pass the rest on the stack
– Reserve space on the stack for all arguments,

including the first four

• Simplifies functions that use variable-length
arguments
– Store a0-a3 on the slots allocated on the stack,

refer to all arguments through the stack

6

© Kavita Bala, Computer Science, Cornell University

Register Layout on Stack
• First four

arguments are in
registers

• The rest are on
the stack

• There is room on
the stack for the
first four
arguments, just
in case

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
addiu sp,sp,-24
li $8, 4
sw $8, 16(sp)
li $8, 5
sw $8, 20(sp)
jal subf
// result in v0

sp

4
space for a3

space for a2

space for a1

space for a0

5

© Kavita Bala, Computer Science, Cornell University

Globals and Locals
• Global variables are allocated in the “data”

region of the program
– Exist for all time, accessible to all routines

• Local variables are allocated within the stack
frame
– Exist solely for the duration of the stack frame

• Dangling pointers are pointers into a destroyed
stack frame
– C lets you create these, Java does not
– int *foo() { int a; return &a; }

7

© Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

local variables

© Kavita Bala, Computer Science, Cornell University

Buffer Overflows

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

orange() {

char buf[100];

gets(buf); // read string, no check

}

local variables

8

© Kavita Bala, Computer Science, Cornell University

Frame Pointer
• It is sometimes cumbersome to keep track of

location of data on the stack
– The offsets change as new values are pushed

onto and popped off of the stack

• Keep a pointer to the top of the stack frame
– Simplifies the task of referring to items on the

stack

• A frame pointer, $30, aka fp
– Value of sp upon procedure entry
– Can be used to restore sp on exit

© Kavita Bala, Computer Science, Cornell University

Frame Pointer

9

© Kavita Bala, Computer Science, Cornell University

Register Usage
• Suppose a routine would like to store a value in a register

• Two options: caller-save and callee-save

• What is tradeoff?
– If all caller save, could be waste
– If all callee save, could be waste

• MIPS calling convention supports both
– Callee-save regs: $16-$23 (s0-s7)
– Caller-save regs: $8-$15,$24,$25 (t0-t9)

© Kavita Bala, Computer Science, Cornell University

Register Usage
• Callee-save

– Save it if you modify it
– Assumes caller needs it
– Save the previous contents of the register on

procedure entry, restore just before procedure return
– E.g. $31 (what is this?)

• Caller-save
– Save it if you need it after the call
– Assume callee can clobber any one of the registers
– Save contents of the register before proc call
– Restore after the call

10

© Kavita Bala, Computer Science, Cornell University

Caller-Save
• Assume registers are free

for the taking
• But other subroutines will

do the same
– must protect values that will

be used later
– save and restore them

before and after subroutine
invocations

• Pays off if a routine makes
few calls to other routines
with values that need to
be preserved

main:
…
[use $9 & $8]
…
addiu sp,sp,-8
sw $9, 4(sp)
sw $8, 0(sp)
jal mult
lw $9, 4(sp)
lw $8, 0(sp)
addiu sp,sp,8
…
[use $9 & $8]

© Kavita Bala, Computer Science, Cornell University

Callee-Save
• Assume caller is using

the registers
• Save on entry, restore

on exit

• Pays off if caller is
actually using the
registers, else the save
and restore are wasted

mult:
addiu sp,sp,-12
sw $31,8(sp)
sw $17, 4(sp)
sw $16, 0(sp)

…
[use $17 and $16]

…
lw $31,8(sp)
lw $17, 4(sp)
lw $16, 0(sp)
addiu sp,sp,12

11

© Kavita Bala, Computer Science, Cornell University

Leaf vs. non-leaf
• Leaf

– Simple, fast
– Don’t save registers

• int f(int x, int y) {return (x+y);}

• f:
add $v0, $a0, $a1 # add x and y
j $ra # return
nop

• Or
j $ra
add $v0, $a0, $a1

© Kavita Bala, Computer Science, Cornell University

Example
f: beq $a1, $zer0, Done

nop
addi $sp, $sp, -12

NotDone: sw $ra, 8($sp)
sw $a0,4($sp)
sw $a1,0($sp)
move $a0, $a0
subi $a1, $a1, 1
jal f
nop
lw $a0,4(sp)
lw $a1,0(sp)
lw $ra,8(sp)
addi $sp, $sp, 12
add v0, $a0, $v0
j Exit

nop
Done: move $v0, $zero
Exit: return $ra

12

© Kavita Bala, Computer Science, Cornell University

Mult example
Main () { int res = mult (a, b);}

int Mult (int a, int b) {
if (b == 0) {return 0;}
else {

res = a + mult (a, b-1);
return res;

}
}

Translates to
Main:

move a0, a
move a1, b
jal mult

© Kavita Bala, Computer Science, Cornell University

Preserved vs. Not preserved

• Preserved (Callee Save)
– $s0-$s7
– Save prior to use, restore before return
– $sp, $fp, $gp, $ra

• Not preserved (Caller Save)
– $t0-$t9, $a0-$a3, $v0, $v1
– Saved by caller if needed after proc call

13

© Kavita Bala, Computer Science, Cornell University

MIPS Register Recap
• Return address: $31 (ra)
• Stack pointer: $29 (sp)
• Frame pointer: $30 (fp)
• First four arguments: $4-$7 (a0-a3)
• Return result: $2-$3 (v0-v1)
• Callee-save free regs: $16-$23 (s0-s7)
• Caller-save free regs: $8-$15,$24,$25 (t0-t9)
• Reserved: $26, $27
• Global pointer: $28 (gp)
• Assembler temporary: $1 (at)

© Kavita Bala, Computer Science, Cornell University

What happens on a call?
• Caller

– Save caller-saved registers $a0-$a3, $t0-$t9
– Load arguments in $a0-$a3, rest passed on stack
– Execute jal

• Callee Setup
– Allocate memory for new frame ($sp = $sp-frame)
– Save callee-saved registers $s0-$s7, $fp, $ra
– Set frame pointer ($fp = $sp-frame-4)

• Callee Return
– Place return value in $v0 and $v1
– Restore any callee-saved registers
– Pop stack ($sp = $sp + frame size)
– Return by jr $ra

14

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Example
f: slti $t0, $a0, 2

beq $t0,$zero, skip
ori $v0, $zero, 1
jr $ra

skip: addiu $sp, $sp, -32
sw $ra, 28($sp)
sw $fp, 24($sp)
addiu $fp, $sp, 28
sw $a0, 32($sp)
addui $a0, $a0, -1
jal f

link: lw $a0, 32($sp)
mul $v0, $v0, $a0
lw $ra, 28($sp)
lw $fp, 24($sp)
addiu $sp, $sp, 32
jr $ra #return

15

© Kavita Bala, Computer Science, Cornell University

Factorial
int fact (int n) {
if (n <= 1) return 1;
return n*fact(n-1);

}

fact: slti $t0, $a0, 2 # a0 < 2
beq $t0,$zero, skip # goto skip
ori $v0, $zero, 1 # return 1
jr $ra

skip: addiu $sp, $sp, -32 # $sp down 32
sw $ra, 28($sp) # save $ra
sw $fp, 24($sp) # save $fp
addiu $fp, $sp, 28 # set up $fp
sw $a0, 32($sp) # save n
addui $a0, $a0, -1 # n = n-1
jal fact

link: lw $a0, 32($sp) # restore n
mul $v0, $v0, $a0 # n * fact (n-1)
lw $ra, 28($sp) # load $ra
lw $fp, 24($sp) # load $fp
addiu $sp, $sp, 32 #pop stack
jr $ra #return

© Kavita Bala, Computer Science, Cornell University

Foo and Bar
int foo (int num) {
return bar(num+1);

}

int bar (int num) {
return num+1;

}

foo: addiu $sp, $sp, -32 #push frame
sw $ra, 28($sp) #store $ra
sw $fp, 24($sp) #store $fp
addiu $fp, $sp, 28 #set new fp
addiu $a0, $a0, 1 #num + 1
jal bar
lw $fp, 24($sp) #load $fp
lw $ra, 28($sp) #load $ra
addiu $sp, $sp, 32 #pop frame
jr $ra

bar: addiu $v0,$a0,1 #leaf procedure
jr $ra #with no frame

16

© Kavita Bala, Computer Science, Cornell University

From Assembly to Running

© Kavita Bala, Computer Science, Cornell University

Big Picture

• Assembler output is obj files
– Not executable
– May refer to external symbols
– Each object file has its own address space

• Linker joins these object files into one
executable

• Loader brings it into memory and executes

17

© Kavita Bala, Computer Science, Cornell University

Object File Generation
• A program is made up of code and data

from several object files
• Each object file is generated independently
• Assembler starts at some PC address, e.g.

0, in each object file, generates code as if
the program were laid out starting out at
location 0x0

• It also generates a symbol table, and a
relocation table
– In case the segments need to be moved

© Kavita Bala, Computer Science, Cornell University

Object file
• Header

– Size and position of pieces of file

• Text Segment
– instructions

• Data Segment
– Static data

• Relocation Information
– Instructions and data that depend on absolute

addresses

• Symbol Table
– External and unresolved references

• Debugging Information

