
1

Lec 10: Assembler

Kavita Bala
CS 3410, Fall 2008
Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 2 is out

– Due Wed after Fall Break
– Robot-wide paths

• PA 1 is due next Wed
– Don’t use incrementor 4 times

• Ask us questions if in doubt

2

© Kavita Bala, Computer Science, Cornell University

Examples

• A[12] = h + A[8]

• lw, $t0, 32($s3)
• add $t0, $s2, $t0
• sw $t0, 48($s3)

© Kavita Bala, Computer Science, Cornell University

3

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Assembler
• Translates text assembly language to

binary machine code

• Input: a text file containing MIPS
instructions in human readable form

• Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in
executable form

4

© Kavita Bala, Computer Science, Cornell University

Assembly Language Instructions
• Arithmetic

– ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU
– ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLV,

SRAV, SLTI, SLTIU
– MULT, DIV, MFLO, MTLO, MFHI, MTHI

• Control Flow
– BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
– J, JR, JAL, JALR, BLTZAL, BGEZAL

• Memory
– LW, LH, LB, LHU, LBU
– SW, SH, SB

• Special
– SYSCALL, BREAK, SYNC, COPROC, LL, SC

© Kavita Bala, Computer Science, Cornell University

Assembly Language

• Assembly language is used to specify
programs at a low-level

• Will I program in assembly?
– I did, for kernel hacking
– For performance (though compilers are

getting better)
– For highly time critical sections
– For hardware without high level languages

5

© Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader
• Want to compute

–out = N.L + (R.L)^n

© Kavita Bala, Computer Science, Cornell University

Example: GPU Phong Shader
• ADD R0, c[3], -v[OPOS] // L-P
• DP3 R1, R0, R0 // ||L-P||^2
• RSQ R2, R1.W // 1/||L-P||
• MUL R0, R0, R2 // R0 = L

• DP3 R3, R0, v[NRML] // R3 = N.L

• …. // Compute E
• DP3 R7, R4, v[NRML] // E.N
• MUL R7, R7, c[6] // 2 (E.N)
• MAD R8, R7, v[NRML], -R4 // 2 (E.N)N-E
• DP3 R9, R8, R0 // R.L
• LOG R10, R9.x // LOG (R.L)
• MUL R9, c[5].x, R10.z // n*(LOG(R.L))
• EXP R11, R9.z // (R.L)^n
• …

6

© Kavita Bala, Computer Science, Cornell University

Assembly Language

• Assembly language is used to specify
programs at a low-level

• What does a program consist of?
– MIPS instructions
– Program data (strings, variables, etc)

© Kavita Bala, Computer Science, Cornell University

Program Layout

• Programs consist of
segments used for different
purposes
– Text: holds instructions
– Data: holds statically allocated

program data such as
variables, strings, etc. add r1,r2,r3

ori r2, r4, 3
...

“cornell cs”
13
25

data

text

7

© Kavita Bala, Computer Science, Cornell University

When you run the program

© Kavita Bala, Computer Science, Cornell University

Assembling Programs

• Programs consist of a mix of
instructions, pseudo-ops
and assembler directives

• Assembler lays out binary
values in memory based on
directives

.text

.ent main
main: la $4, Larray

li $5, 15
...
li $4, 0
jal exit
.end main
.data

Larray:
.long 51, 491, 3991

8

© Kavita Bala, Computer Science, Cornell University

Example pseudo-ops

• blt = slt and bne
– blt $s3, $s4, label
Equivalent to
– slt $at, $s3, $s4
– bne $at, $zero, label

• Use register $at (assembler temporary) to
compile this

© Kavita Bala, Computer Science, Cornell University

Examples

• gcc –S helloWorld.c

• gcc –S add1To100.c

• gcc –S add1To100Sq.c

9

© Kavita Bala, Computer Science, Cornell University

Add 1 to 100 Square

#include <stdio.h>

int main (int argc, char* argv[]) {

int count = 0;
int i = 0;
for (i = 1; i <= 100; i++) { count += i*i; }
printf ("The sum from 0 .. 100 is %d\n", count);

}

© Kavita Bala, Computer Science, Cornell University

10

© Kavita Bala, Computer Science, Cornell University

Procedure Calls

11

© Kavita Bala, Computer Science, Cornell University

Procedures

• Enable code to be reused by allowing code
snippets to be invoked

• Will need a way to
– call the routine
– pass arguments to it

fixed length
variable length
Recursive calls

– return value to caller
– manage registers

© Kavita Bala, Computer Science, Cornell University

Take 1: Use Jumps

• Jumps and branches can transfer control to the
callee (called procedure)

• Jumps and branches can transfer control back

main:
j mult

Laftercall1:
add $1,$2,$3

mult:
…

…
j Laftercall1

12

© Kavita Bala, Computer Science, Cornell University

Take 1: Use Jumps

• Jumps and branches can transfer control to the callee
• Jumps and branches can transfer control back
• What happens when there are multiple calls from

different call sites?

main:
j mult

Laftercall1:
add $1,$2,$3

j mult
Laftercall2:

sub $3,$4,$5

mult:
…

…
j Laftercall1

© Kavita Bala, Computer Science, Cornell University

Jump And Link

• JAL (Jump And Link) instruction moves a
new value into the PC, and simultaneously
saves the old value in register $31

• Thus, can get back from the subroutine to
the instruction immediately following the
jump by transferring control back to PC in
register $31

13

© Kavita Bala, Computer Science, Cornell University

Take 2: JAL/JR

• JAL saves the PC in register $31
• Subroutine returns by jumping to $31

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

mult:
…

…
jr $31

© Kavita Bala, Computer Science, Cornell University

Take 2: JAL/JR

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

mult:
…

…
jr $31

• JAL saves the PC in register $31
• Subroutine returns by jumping to $31
• What happens for recursive invocations?

14

© Kavita Bala, Computer Science, Cornell University

Take 2: JAL/JR

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

mult:
…
beq $4, $0, Lout
...
jal mult

Linside:
…

Lout:
jr $31

• Recursion overwrites contents of $31
• Need to save and restore the register

contents

© Kavita Bala, Computer Science, Cornell University

Call Stacks
• A call stack contains activation

records (aka stack frames)

• Each activation record contains
– the return address for that

invocation
– the local variables for that

procedure

sp

Laftercall1

Linside

high mem

low mem

15

© Kavita Bala, Computer Science, Cornell University

Call Stacks
• A stack pointer (sp) keeps track

of the top of the stack
– dedicated register ($29) on the

MIPS

• Manipulated by push/pop
operations
– push: move sp down, store
– pop: load, move sp up

sp

Laftercall1

Linside

high mem

low mem

© Kavita Bala, Computer Science, Cornell University

Call Stacks
• A call stack contains activation

records (aka stack frames)

• Each activation record contains
– the return address for that

invocation
– the local variables for that

procedure

sp

Laftercall1

Linside

high mem

low mem

16

© Kavita Bala, Computer Science, Cornell University

Stack Growth
• Stacks start at a high address in memory

• Stacks grow down as frames are pushed
on
– Recall that the data region starts at a low

address and grows up
– The growth potential of stacks and data region

are not artificially limited

© Kavita Bala, Computer Science, Cornell University

Take 3: JAL/JR with Activation Records

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

• Stack used to save and restore contents of $31

mult:
addiu sp,sp,-4
sw $31, 0(sp)
beq $4, $0, Lout
...
jal mult

Linside:
…

Lout:
lw $31, 0(sp)
addiu sp,sp,4
jr $31

17

© Kavita Bala, Computer Science, Cornell University

Take 3: JAL/JR with Activation Records

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

mult:
addiu sp,sp,-4
sw $31, 0(sp)
beq $4, $0, Lout
...
jal mult

Linside:
…

Lout:
lw $31, 0(sp)
addiu sp,sp,4
jr $31

• Stack used to save and restore contents of $31
• How about arguments?

© Kavita Bala, Computer Science, Cornell University

Arguments & Return Values
• Need consistent way of passing arguments

and getting the result of a subroutine
invocation

• Given a procedure signature, need to know
where arguments should be placed
– int min(int a, int b);
– int subf(int a, int b, int c, int d, int e);
– int isalpha(char c);
– int treesort(struct Tree *root);
– struct Node *createNode();
– struct Node mynode();

• Too many combinations of char, short, int,
void *, struct, etc.
– MIPS treats char, short, int and void * identically

18

© Kavita Bala, Computer Science, Cornell University

Simple Argument Passing
• First four arguments are

passed in registers
– Specifically, $4, $5, $6 and

$7, aka a0, a1, a2, a3
• The returned result is

passed back in a register
– Specifically, $2, aka v0

main:
li a0, 6
li a1, 7
jal min
// result in v0

© Kavita Bala, Computer Science, Cornell University

Many Arguments
• What if there

are more than
4 arguments?

• Use the stack
for the
additional
arguments
– “spill”

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
li $8, 4
addiu sp,sp,-4
sw $8, 0(sp)
jal subf
// result in v0

sp
4

19

© Kavita Bala, Computer Science, Cornell University

Many Arguments
• What if there

are more than
4 arguments?

• Use the stack
for the
additional
arguments
– “spill”

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
addiu sp,sp,-8
li $8, 4
sw $8, 0(sp)
li $8, 5
sw $8, 4(sp)
jal subf
// result in v0

sp
4

5

© Kavita Bala, Computer Science, Cornell University

Variable Length Arguments
• printf(“Coordinates are: %d %d %d\n”, 1, 2, 3);

• Could just use the regular calling convention,
placing first four arguments in registers,
spilling the rest onto the stack
– Callee requires special-case code
– if(argno == 1) use a0, … else if (argno == 4) use

a3, else use stack offset

20

© Kavita Bala, Computer Science, Cornell University

Variable Length Arguments
• Best to use an (initially confusing but

ultimately simpler) approach:
– Pass the first four arguments in registers, as usual
– Pass the rest on the stack
– Reserve space on the stack for all arguments,

including the first four

• Simplifies functions that use variable-length
arguments
– Store a0-a3 on the slots allocated on the stack,

refer to all arguments through the stack

© Kavita Bala, Computer Science, Cornell University

Register Layout on Stack
• First four

arguments are in
registers

• The rest are on
the stack

• There is room on
the stack for the
first four
arguments, just
in case

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
addiu sp,sp,-24
li $8, 4
sw $8, 16(sp)
li $8, 5
sw $8, 20(sp)
jal subf
// result in v0

sp

4
space for a3

space for a2

space for a1

space for a0

5

21

© Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

sp

4
space for a3

space for a2

space for a1

space for a0

5

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

…

}

© Kavita Bala, Computer Science, Cornell University

Pointers and Structures
• Pointers are 32-bits, treat just like ints
• Pointers to structs are pointers
• C allows passing whole structs

– int distance(struct Point p1, struct Point p2);

– Treat like a collection of consecutive 32-bit
arguments, use registers for first 4 words,
stack for rest

– Inefficient and to be avoided, better to use
int
distance(struct Point *p1, struct Point *p2);

22

© Kavita Bala, Computer Science, Cornell University

Globals and Locals
• Global variables are allocated in the “data”

region of the program
– Exist for all time, accessible to all routines

• Local variables are allocated within the stack
frame
– Exist solely for the duration of the stack frame

• Dangling pointers are pointers into a destroyed
stack frame
– C lets you create these, Java does not
– int *foo() { int a; return &a; }

© Kavita Bala, Computer Science, Cornell University

Frame Pointer
• It is sometimes cumbersome to keep track of

location of data on the stack
– The offsets change as new values are pushed

onto and popped off of the stack

• Keep a pointer to the top of the stack frame
– Simplifies the task of referring to items on the

stack

• A frame pointer, $30, aka fp
– Value of sp upon procedure entry
– Can be used to restore sp on exit

23

© Kavita Bala, Computer Science, Cornell University

Frame Pointer

© Kavita Bala, Computer Science, Cornell University

Register Usage
• Suppose a routine would like to store a value in

a register

• Two options: caller-save and callee-save

• MIPS calling convention supports both

24

© Kavita Bala, Computer Science, Cornell University

Register Usage
• Callee-save

– Save it if you modify it
– Assumes caller needs it
– Save the previous contents of the register on

procedure entry, restore just before procedure return
– E.g. $31 (if you are a non-leaf… what is that?)

• Caller-save
– Save it if you need it after the call
– Assume callee can clobber any one of the registers
– Save contents of the register before proc call
– Restore after the call

© Kavita Bala, Computer Science, Cornell University

Caller vs Callee tradeoff

• MIPS supports both

• Callee-save regs: $16-$23 (s0-s7)
• Caller-save regs: $8-$15,$24,$25 (t0-t9)

25

© Kavita Bala, Computer Science, Cornell University

Callee-Save
• Assume caller is using

the registers
• Save on entry, restore

on exit

• Pays off if caller is
actually using the
registers, else the save
and restore are wasted

mult:
addiu sp,sp,-12
sw $31,8(sp)
sw $17, 4(sp)
sw $16, 0(sp)

…
[use $17 and $16]

…
lw $31,8(sp)
lw $17, 4(sp)
lw $16, 0(sp)
addiu sp,sp,12

© Kavita Bala, Computer Science, Cornell University

Caller-Save
• Assume registers are free

for the taking
• But other subroutines will

do the same
– must protect values that will

be used later
– save and restore them

before and after subroutine
invocations

• Pays off if a routine makes
few calls to other routines
with values that need to
be preserved

main:
…
[use $9 & $8]
…
addiu sp,sp,-8
sw $9, 4(sp)
sw $8, 0(sp)
jal mult
lw $9, 4(sp)
lw $8, 0(sp)
addiu sp,sp,8
…
[use $9 & $8]

26

© Kavita Bala, Computer Science, Cornell University

Leaf vs. non-leaf
• Leaf

– Simple, fast
– Don’t save registers

• int f(int x, int y) {return (x+y);}

• f: add $v0, $a0, $a1 # add x and y
• j $ra # return

© Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

local variables

27

© Kavita Bala, Computer Science, Cornell University

Buffer Overflows

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

orange() {

char buf[100];

gets(buf); // read string, no check

}

local variables

