
1

CS/INFO 330
Java EE Technology

Mirek Riedewald
mirek@cs.cornell.edu

(Based on Sun’s Java EE Tutorial)

CS/INFO 330 2

Resources

• Java EE tutorial
– http://java.sun.com/javaee/5/docs/tutorial/doc/

• Java EE SDK API
– http://java.sun.com/javaee/5/docs/api/

CS/INFO 330 3

Java EE Application Model

2

CS/INFO 330 4

Java EE Components
• Client

– Application client, applets
• Server

– Web components: Java Servlet, JavaServer Faces, JavaServer
Pages (JSP)

– Business components: Enterprise JavaBeans (EJB)

• Written in Java, compiled like other Java code, but:
– Assembled into a Java EE application
– Verified to be well-formed and Java EE spec compliant
– Deployed to production: run and managed by Java EE server

CS/INFO 330 5

Java EE Web Client

• Dynamic web pages containing markup
– HTML, XML
– Generated by web components running in the web

tier
• Web browser

– Renders pages received from the server

• Thin client: offloads heavyweight operations like
DB access and execution of business logic to
enterprise beans executing on the server

CS/INFO 330 6

Client-Server Communication

JSP pages,
Servlets

3

CS/INFO 330 7

Enterprise Information System

CS/INFO 330 8

Java EE Containers
• Organize business logic into reusable components
• Server provides services in form of a container for every

component type

• Container = interface between component and low-level
functionality
– Before component can be executed, it must be assembled into a

Java EE module and deployed into its container
– Can specify container settings for each component for assembly

• Security model
• Transaction model
• JNDI lookup services
• Remote connectivity model

CS/INFO 330 9

Container Types
• Java EE server: The runtime portion of

a Java EE product. A Java EE server
provides EJB and web containers.

• Enterprise JavaBeans (EJB) container:
Manages the execution of enterprise
beans for Java EE applications.

• Web container: Manages the
execution of JSP page and servlet
components for Java EE applications.

• Application client container: Manages
the execution of application client
components.

• Applet container: Manages the
execution of applets. Consists of a
web browser and Java Plug-in running
on the client together.

4

CS/INFO 330 10

Web Services

• Java EE XML APIs
– No low-level programming needed

• SOAP protocol for transporting client
requests and web service responses

• WSDL format for describing network
services

• UDDI and ebXML to publish information
about products and web services

CS/INFO 330 11

Packaging Applications
• Java EE application is delivered in an Enterprise Archive (EAR) file (similar

to JAR)
– Deployment descriptor: deployment settings of application, module, or

component
– EJB modules: class files for enterprise beans and EJB deployment descriptor
– Web modules: servlet class files, JSP files, supporting class files, GIF and HTML

files, and web application deployment descriptor
– Application client modules: class files and application client deployment

descriptor
– Resource adapter modules: all Java interfaces, classes, native libraries, and

other documentation, along with the resource adapter deployment descriptor

CS/INFO 330 12

Java EE 5 APIs

5

CS/INFO 330 13

EJB
• Implements modules of business logic

– Used alone or with other EJBs
• Session bean

– Represents transient conversation with client
– When client finishes executing, session bean and its

data are gone
• Message-driven bean

– Receive messages, typically Java Message Service
(JMS) messages, asynchronously

• (Persistent) entity beans are replaced by Java
persistence API entities

CS/INFO 330 14

Other APIs
• Java Servlet

– Extends capabilities of servers that use the request-response
programming model

• JavaServer Pages (JSP)
– Lets you add servlet code directly into a text-based document

• JavaServer Faces
– User interface framework
– GUI components, rendering components

• Java Message Service API (JMS)
– Messaging standard for loosely coupled, reliable, and

asynchronous message exchange
• Java Transaction API

– Standard interface for demarcating transactions

CS/INFO 330 15

More APIs
• JavaMail API

– For sending email notifications
• JavaBeans Activation Framework (JAF)

– Used by JavaMail
• Java API for XML Processing (JAXP)

– Parse and transform XML documents: DOM, SAX,
XSLT

• Java API for XML Web Services (JAX-WS)
• Java Architecture for XML binding (JAXB)
• Java API for XML Registries (JAXR)

– For resource discovery

6

CS/INFO 330 16

Even More APIs
• Java Database Connectivity API (JDBC)

– Invoke SQL commands from Java programs
– Used in enterprise bean when session bean has

access to the database or directly from servlet or JSP
page

• Java Persistence API
• Java Naming and Directory Interface (JNDI)

– Enables access to various naming and directory
services

• Java Authentication and Authorization Service
(JAAS)

CS/INFO 330 17

Web Applications
• Client sends HTTP request

• Web server that implements Java
Servlet and JavaServer Pages
technology converts request into
an HTTPServletRequest object

• Object is delivered to a web
component, which can interact
with JavaBeans components or a
database to generate dynamic
content

• Web component can then
generate an
HTTPServletResponse or pass
request to another web
component

• Eventually a web component
generates a
HTTPServletResponse object,
which is converted to an HTTP
response and returned to the
client

CS/INFO 330 18

Web Application Life Cycle
1. Develop the web component code
2. Develop the web application deployment

descriptor
3. Compile the web application components and

helper classes referenced by the components
4. Optionally package the application into a

deployable unit
5. Deploy the application into a web container
6. Access a URL that references the web

application

7

CS/INFO 330 19

Web Modules
• Smallest deployable and usable

unit of web resources
• web.xml: Web application

deployment descriptor
– Not needed if module does not

contain any servlets, filter, or
listener components (i.e., only has
JSP pages and static files)

• sun-web.xml: runtime deployment
descriptor

– Context root of web application,
mapping of names of application
resources to Application Server
resources

• Can create application-specific
subdirectories

• Portable: Can be deployed into
any web container that conforms
to the Java Servlet spec

CS/INFO 330 20

Java Servlets
• Generate dynamic content on server side
• Main advantages over CGI: portability, scalability
• Definition: Servlet = Java programming language class

– Extends capabilities of servers for request-response type
applications

– Can respond to any type of request, but commonly used to
extend applications hosted by web servers

• Defines HTTP-specific servlet classes
• javax.servlet, javax.servlet.http

• Must implement Servlet interface
• HttpServlet class provides methods for handling HTTP-

specific services

CS/INFO 330 21

Servlet Examples

• Look at example servlets in Java EE 5
tutorial; they show
– Handling of HTTP GET requests
– Construction of responses
– Tracking of session information

8

CS/INFO 330 22

Servlet Life Cycle
• Controlled by container in which servlet has

been deployed
• When request is mapped to a servlet, container

performs several steps
– Initialize servlet if it does not exist yet

• Loads servlet class and creates class instance
• Initializes servlet instance by calling init()

– Invoke service() method, passing request and
response objects

• Container removes servlet by calling its destroy()
method

CS/INFO 330 23

Handling Life Cycle Events

• You can monitor and react to servlet life cycle
events by defining listener objects, e.g.:
– Initialization, destruction:

javax.servlet.ServletContextListener and
javax.servlet.ServletContextEvent

– Servlet request started:
javax.servlet.ServletRequestListener and
javax.servlet.ServletRequestEvent

• Specified in listener element of deployment
descriptor (web.xml file)

CS/INFO 330 24

Servlet Errors

• Web container generates default page
when servlet exception occurs

• Can return more specific error messages
– See bookstore example in tutorial

9

CS/INFO 330 25

Information Sharing
• Option 1: Through scope objects

– Web context (javax.servlet.ServletContext): accessible from web
components within a web context

– Session (javax.servlet.http.HttpSession): accessible from web
components handling a request that belongs to a session

– Request (javax.servlet.ServletRequest): accessible from web
components handling the request

– Page (javax.servlet.jsp.JspContext): accessible from JSP page
that creates the object

• Challenge: might have to handle concurrent access to
shared resources
– Use proper synchronization techniques for multi-threaded

programs

CS/INFO 330 26

Example: Session Scope Object
public void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
// Get the user's session and shopping cart
HttpSession session = request.getSession(true);
ResourceBundle messages = (ResourceBundle)

session.getAttribute("messages");

ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

// If the user has no cart, create a new one
if (cart == null) {
cart = new ShoppingCart();
session.setAttribute("cart", cart);

}
Set session attribute value

Access session attribute value

CS/INFO 330 27

Example: Web Context Scope
Object

• After loading/instantiation of servlet class, web container
initializes the servlet
– During initialization, servlet can read persistent configuration

data, initialize resources, etc.
– Example: initialize variable that points to the DB access object

created by the web context listener

public class CatalogServlet extends HttpServlet {
private BookDBAO bookDB;

public void init() throws ServletException {
bookDB = (BookDBAO) getServletContext().getAttribute("bookDB");
if (bookDB == null) throw new UnavailableException("Couldn’t get database.");

}
}

10

CS/INFO 330 28

Synchronization Example
• Hit counter or order counter from bookstore example:

public class Counter {
private int counter;
public Counter() {

counter = 0;
}
public synchronized int getCounter() {

return counter;
}
public synchronized int setCounter(int c) {

counter = c;
return counter;

}
public synchronized int incCounter() {

return(++counter);
}

}

CS/INFO 330 29

Information Sharing (contd.)
• Option 2: Through database access

– For shared data that is persistent between web application
invocations

– DB access through Java Persistence API
– Use transactions, e.g., to ensure all-or-nothing execution of

orders in shopping cart
try {
utx.begin();
bookDB.buyBooks(cart);
utx.commit();

} catch (Exception ex) {
try {
utx.rollback();

} catch(Exception e) {
System.out.println("Rollback failed: "+e.getMessage());

}
System.err.println(ex.getMessage());
orderCompleted = false;}

}

Instance of UserTransaction

CS/INFO 330 30

Servlet Service Methods

• Handles the service request
– GenericServlet.service(ServletRequest,

ServletResponse) method
– HttpServlet.doXYZ(ServletRequest,

ServletResponse), where XYZ is Get, Post, or other
HTTP request

• General pattern
– Extract information from request
– Access external resources, e.g., database
– Populate response based on that information

11

CS/INFO 330 31

Extracting Request Information

• Methods in ServletRequest to get XYZ: getXYZ
– E.g., identifier of book that customer wants to

purchase is included as parameter to the request:
String bookId = request.getParameter(“bookId");

• HttpServletRequest contains HTTP request
object
– Specific functionality: getCookies, getMethod (e.g.,

GET or POST), getQueryString (from URL),
getSession

CS/INFO 330 32

Constructing Responses

• Implements ServletResponse interface
– Retrieve output stream for sending data to client

(getWriter, getOutputStream methods)
– Indicate content type (setContentType method)
– Indicate whether to buffer output (setBufferSize

method)
– Set localization information, e.g., locale and character

encoding
• HttpServletResponse additional functionality

– HTTP header fields, cookies can be added

CS/INFO 330 33

Example Response Code
public class BookDetailsServlet extends HttpServlet {
...
public void doGet (HttpServletRequest request,

HttpServletResponse response) throws
ServletException, IOException {

...
// set headers before accessing the Writer
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the response
out.println("<html>" + "<head><title>+

messages.getString("TitleBookDescription") +
</title></head>");

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/banner");
if (dispatcher != null)
dispatcher.include(request, response);

// Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {
// and the information about the book
try {
Book bd = bookDB.getBook(bookId);

...
// Print the information obtained
out.println("<h2>" + bd.getTitle() + "</h2>" +

...
} catch (BookNotFoundException ex) {
response.resetBuffer();
throw new ServletException(ex);

}
}
out.println("</body></html>");
out.close();

}
}

12

CS/INFO 330 34

Filtering Requests and Responses

• Filter can transform header and content
– Does not create response, but modifies it
– Can add attribute to request or insert data (e.g., a visitor counter)

in response
• Main tasks:

– Query the request and act accordingly
– Block request-response pair from passing any further
– Modify request headers and data (customized request)
– Modify response headers and data (customized response)
– Interact with external resources

• Examples: authentication, logging, image conversion,
data compression, encryption, tokenizing streams, XML
transformations

CS/INFO 330 35

Programming Filters

• Filter, FilterChain, FilterConfig interfaces in
javax.servlet package

• Use doFilter method for filter functionality
• Usual init() and destroy() methods

– Can pass initialization parameters to the filter
through the FilterConfig object

• Look at Java EE tutorial examples

CS/INFO 330 36

Maintaining Client state
• Example: shopping cart
• API for managing sessions

– HttpSession object
• Use session attributes

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Get the user’s session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");
...

// Determine the total price of the user’s books
double total = cart.getTotal();

13

CS/INFO 330 37

Session Management

• HTTP client cannot terminate session
– Each session has associated timeout
– Timeout can be set in web.xml file
– “Last” servlet needs to invalidate session

public class ReceiptServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
// Get the user’s session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();
...

CS/INFO 330 38

Session Tracking
• Pass identifier between client and server

– Cookie or as part of URL
• ID in URL when cookies disabled: call

response’s encodeURL method
– Example from doGet method of ShowCartServlet:

out.println("<p> <p><a href=\"" +
response.encodeURL(request.getContextPath() + "/bookcatalog") +

"\">" + messages.getString("ContinueShopping") +
" " + "<a href=\"" +

response.encodeURL(request.getContextPath() + "/bookcashier") +
"\">" + messages.getString("Checkout") +
" " + "<a href=\"" +

response.encodeURL(request.getContextPath() + "/bookshowcart?Clear=clear") +
"\">" + messages.getString("ClearCart") + "");

CS/INFO 330 39

Finalizing a Servlet
• Container calls destroy() method

– Release all resources
– Save persistent state

• Make sure any threads still handling client
requests have completed before shutdown
– Might have to use counter for number of running

service methods for a servlet
– Notify long-running methods to shut down
– Make long-running methods behave “politely”

• Need to check field that notifies them about shutdown

• Look at tutorial for examples

14

CS/INFO 330 40

Enterprise Bean
• Server side component that encapsulates

business logic
• Runs in EJB container

– Container provides system-level services like
transaction management and security authorization

• Forms the core of transactional Java EE
applications

• Bean types:
– Session bean
– Message-driven bean

CS/INFO 330 41

Session Bean
• Represents single client inside the Application

Server
– Client invokes session bean’s methods
– Not shared between clients
– Not persistent

• Stateful session bean
– State retained for duration of client-bean session

• Stateless session bean
– No client-specific state retained after bean method

finishes

CS/INFO 330 42

Message-Driven Bean

• For asynchronous message processing
• Acts as JMS (Java Message Service) message

listener
– Messages from any Java EE component (app client,

another enterprise bean, web component), JMS app,
or even non Java-EE system

• Client components accesses bean through
sending of message to destination for which
bean is MessageListener
– Think of triggers in a database system

15

CS/INFO 330 43

Defining Client Access to Beans
• Only for session beans…
• Remote client

– @Remote annotation of business interface and bean class
– Typically used for beans accessed by app client and to allow

distributed processing
• Local Client

– Optional @Local annotation of business interface and bean
class

– Typically used for tightly coupled beans
• E.g., bean for processing sales orders that calls bean that emails

confirmation message

• If in doubt, choose remote

CS/INFO 330 44

Other Bean Info in Tutorial
• Contents
• Naming conventions: important, because bean

consists of multiple parts
• Different life cycles for different bean types
• Check out examples in tutorial

– Stateless session bean for currency conversion (uses
JSP)

– Stateful session bean for cart, accessed by remote
client

– Stateless session bean that sets a timer
– Message-driven bean (read this if you plan to use

asynchronous messaging functionality)

CS/INFO 330 45

Java Persistence API
• Entity typically represents table in DBMS

– Entity instance = row in table
– Has mapping of persistent fields and properties of entity to

relational data in the DBMS
• See tutorial for possible data types for storing persistent

state
• Method signatures for single-valued properties:

– Type getProperty()
– void setProperty(Type type)

• Method signatures for collection-valued fields and
properties, e.g., if customer has property that contains a
set of phone numbers:
– Set<PhoneNumber> getPhoneNumbers() {}
– void setPhoneNumbers(Set<PhoneNumber>) {}

16

CS/INFO 330 46

Enforcing Constraints

• Can specify properties like in relational database
– Primary key
– Multiplicity in entity relationships

• One-to-one, one-to-many, etc.

– Referential integrity
• Cascading deletion

– Entity inheritance

• Good news: Can automatically create entity
classes from existing database

CS/INFO 330 47

Managing Entities

• Managed by entity manager
– Instance of javax.persistence.EntityManager

• EntityManager instance is associated with
persistence context
– Set of managed entity instances in particular

data store
– EntityManager API supports database query

and update functionality

CS/INFO 330 48

More Info About Java Persistence

• Persistence unit is configured by
descriptor file persistence.xml

• DataSource object represents real data
source
– Created in application server

• Look at bookstore example in Chapter 25
– Book class for accessing book table

17

CS/INFO 330 49

Book Class
import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="WEB_BOOKSTORE_BOOKS")

public class Book implements Serializable {

private String bookId;
private String title;

public Book() { }

public Book(String bookId, String title, ...) {
this.bookId = bookId;
this.title = title;
...

}

@Id
public String getBookId() {

return this.bookId;
}

public String getTitle() {
return this.title;

}
...

public void setBookId(String id) {
this.bookId=id;

}

public void setTitle(String title) {
this.title=title;

}
...

}

Declare it as entity

Name of database table

Primary key

CS/INFO 330 50

Accessing An Entity Manager

• Need to obtain EntityManager instance to
access database
– Use @PersistenceUnit annotation to inject

EntityManagerFactory into object
– Can obtain EntityManager instance from factory
– Can only be used with classes that are managed by

Java EE compliant container
• Cannot inject into web container

– Can do it by injection into object managed by the container, in
particular servlet and ServletContextListener objects

CS/INFO 330 51

Example for Web Tier
public final class ContextListener implements SerlvetContextListener {
...
@PersistenceUnit
private EntityManagerFactory emf;

public void contextInitialized(ServletContexEvent event) {
context = event.getServletContext();
...
try {

BookDBAO bookDB = new BookDBAO(emf);
context.setAttribute("bookDB", bookDB);

} catch (Exception ex) {
System.out.println("Couldn’t create bookstore database bean: " + ex.getMessage());

}}}

BookDBAO object can then obtain EntityManager from the factory:

private EntityManager em;

public BookDBAO (EntityManagerFactory emf) throws Exception {
em = emf.getEntityManager();
...

}

18

CS/INFO 330 52

Access From Managed Beans
• Managed bean allows resource injection

– Do not need EntityManagerFactory
– Thread safety not an issue here (but would be when working

with servlets and listeners, therefore they need to inject thread-
safe factory)

– Simpler code, e.g., BookDBAO object as managed bean:

import javax.ejb.*;
import javax.persistence.*;
import javax.transaction.NotSupportedException;
public class BookDBAO {

@PersistenceContext
private EntityManager em;

...

CS/INFO 330 53

Database Queries
public List getBooks() throws BooksNotFoundException {

try {
return em.createQuery(

"SELECT bd FROM Book bd ORDER BY bd.bookId").getResultList();
} catch(Exception ex){

throw new BooksNotFoundException("Could not get books: “ + ex.getMessage());
}

}

public Book getBook(String bookId) throws BookNotFoundException {
Book requestedBook = em.find(Book.class, bookId);
if (requestedBook == null) {

throw new BookNotFoundException("Couldn’t find book: " + bookId);
}
return requestedBook;

}

CS/INFO 330 54

Database Updates
public void buyBooks(ShoppingCart cart) throws
OrderException{

Collection items = cart.getItems();
Iterator i = items.iterator();
try {

while (i.hasNext()) {
ShoppingCartItem sci =

(ShoppingCartItem)i.next();
Book bd = (Book)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity();
buyBook(id, quantity);

}
} catch (Exception ex) {

throw new OrderException("Commit failed: "
+ ex.getMessage());

}
}

public void buyBook(String bookId, int quantity)
throws OrderException {
try {

Book requestedBook = em.find(Book.class,
bookId);

if (requestedBook != null) {
int inventory = requestedBook.getInventory();
if ((inventory - quantity) >= 0) {

int newInventory = inventory - quantity;
requestedBook.setInventory(newInventory);

} else{
throw new OrderException("Not enough of "

+ bookId + " in stock to complete
order.");

}
}

} catch (Exception ex) {
throw new OrderException("Couldn’t purchase

book: "
+ bookId + ex.getMessage());

}
}

19

CS/INFO 330 55

Database Update (contd.)
• Ensure all book purchases in cart are treated as

single transaction
– Inject UserTransaction resource into Dispatcher

servlet
@Resource
UserTransaction utx;
...
try {

utx.begin();
bookDBAO.buyBooks(cart);
utx.commit();

} catch (Exception ex) {
try {

utx.rollback();
} catch (Exception exe) {

System.out.println("Rollback failed: "+exe.getMessage());
}
...

CS/INFO 330 56

Persistence In EJB Tier

• Check out the tutorial, chapter 26
• Will get back to this after programming

assignments

