
1

CIS 330:
Applied Database Systems

Lecture 2: Technologies at the Three Tiers
Johannes Gehrke

johannes@cs.cornell.edu
http://www.cs.cornell.edu/johannes

Slides 8-21 are based on material from Gustavo Alonso, Fabio Casati, Harumi
Kuno, and Vijay Machiraju, and the copyright of these slides lies with the authors
and Springer Verlag Heidelberg (http://www.inf.ethz.ch/~alonso/teaching.html).
Slides 55-75 are based on material from Ethan Cerami (http://www.ecerami.com).

Announcements

• Laptop handout starting today at 5:30pm in
Upson B17.
• Time for imaging the laptop

• Thursdays class starts at 2:55pm
• First two assignments will be online later today.

• Exception: They are not handed out via the CMS;
watch the course homepage.

• Slides from the first lectures will be online
tonight

• New Information Science courses

CIS 295: Information Modeling

Instructor: Klivans
TR 11:40 – 12:55

Phillips 403
4 credits, S/U optional

Co-requisite: Math 231 or equivalent

This course teaches basic mathematical concepts in information modeling. Topics to be covered
include graph theory, discrete probability, finite automata, Markov models and hidden Markov
models. We will be guided by examples and applications from various areas of information
science such as: the structure of the Web, genome sequences, natural languages, and signal
processing. This course assumes no prior knowledge of any of the topics listed above.

Note: CIS 295 will be offered every semester. This course is a required course for the new
Information Science (IS) major in the College of Arts and Science and the College of Agriculture
and Life Sciences. It can also be used to satisfy the math/stats course requirement for the
Information Science minor/concentration.

CIS 295 and CS 280 may not both be taken for credit towards the IS major.

2

CIS 435/635: Seminar on Applications of Information Science
Instructor: Paul Ginsparg

TR 11:40-12:55pm
Information Science seminar room, 301 College Avenue.

Grade options: Letter or S/U. 3 credits

This seminar course examines the technological, sociological, legal, financial and political
aspects of information systems in the context of innovative applications. The course is designed
as a series of case studies in information science, with presentations given by the people involved
in designing or maintaining those systems. Examples will include arXiv, NSDL, NuPrl, the
Legal Information Institute, Protomap, Dspace, and others created or maintained within Cornell,
as well as some representative exterior resources.

The case studies will be augmented by readings and discussions of recent articles on technical
components of the information systems, including machine learning tools, link and network
analysis, metadata standards, document formats and clustering, data integrity, and natural
language processing. Aspects of human and social interactions with these information systems to
be considered will include copyright issues, privacy issues, public/private partnerships, and
publishing models. The course prerequisites include background in computing, data structures,
and programming at the level of CS 211 or equivalent, and experience in using information
systems.

CIS 440: Social and Economic Data (also ILRLE 447 and ILRLE 740)

Instructor: John Abowd
MW 10:10-11:00am

F (lab) 10:10-11:00am OR 12:20-1:10pm
HO 162
4 credits

Prerequisites: one semester of calculus, the IS statistics requirement, at least one upper level
social science course or permission of the instructor.

The course is designed to teach the student all the basics required to acquire and transform raw
information into social and economic data. Legal, statistical, computing, and social science
aspects of the data "manufacturing" process will all be treated. The formal US, Eurostat, OECD,
and UN statistical infrastructure will be covered. Major private data sources will also be covered.
Topics include: basic statistical principles of populations and sampling frames; acquiring data via
samples, censuses, administrative records, and transaction logging; the law, economics and
statistics of data privacy and confidentiality protection; data linking and integration techniques
(probabilistic record linking; multivariate statistical matching); analytic methods in the social
sciences. Grading will be based on a group term project.

Last Class: Three-Tier Architectures

Resource Management

Application Server

Client Program (Web Browser)Presentation tier

Middle tier

Data tier

3

Technologies

Database System
(Microsoft SQL Server)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript
XSLT

SQL, JSP,
Servlets
Cookies, EJB,
XPath, web
services

XML,
Stored Procedures

Layers and Tiers
Client is any user or program that wants

to perform an operation over the
system. Clients interact with the
system through a presentation layer

The application logic determines what the
system actually does. It takes care of
enforcing the business rules and
establish the business processes. The
application logic can take many forms:
programs, constraints, business
processes, etc.

The resource manager deals with the
organization (storage, indexing, and
retrieval) of the data necessary to
support the application logic. This is
typically a database but it can also be
a text retrieval system or any other
data management system providing
querying capabilities and persistence.

Client

Application Logic

Resource Manager

Presentation layer

Business rules

Business objects

Client

Server

Database

Client

Business processes

Persistent storage

Copyright Springer Verlag Berlin Heidelberg 2004

A Game of Boxes and Arrows
• Each box represents a part of the system.
• Each arrow represents a connection

between two parts of the system.
• The more boxes, the more modular the

system: more opportunities for distribution
and parallelism. This allows encapsulation,
component based design, reuse.

• The more boxes, the more arrows: more
sessions (connections) need to be
maintained, more coordination is necessary.
The system becomes more complex to
monitor and manage.

• The more boxes, the greater the number of
context switches and intermediate steps to
go through before one gets to the data.
Performance suffers considerably.

• System designers try to balance the
flexibility of modular design with the
performance demands of real applications.
Once a layer is established, it tends to
migrate down and merge with lower layers.

There is no problem in system
design that cannot be solved by

adding a level of indirection.
There is no performance

problem that cannot be solved
by removing a level of

indirection.

Copyright Springer Verlag Berlin Heidelberg 2004

4

Top-Down Design

top-down design

PL-A PL-B
PL-C

AL-A
AL-B

AL
-D

AL
-C

RM-1 RM-2

top-down architecture

RM-1 RM-2

AL-A AL
-D

AL
-C AL-B

PL-A
PL-B

PL-C

Copyright Springer Verlag Berlin Heidelberg 2004

Top-Down design

presentation
layer

resource management
layer

application logic
layer

client

in
fo

rm
at

io
n

sy
s t

em

1. define access channels
and client platforms

2. define presentation
formats and protocols for
the selected clients and
protocols

3. define the functionality
necessary to deliver the
contents and formats needed
at the presentation layer

4. define the data sources
and data organization needed
to implement the application
logic

top-down design

Copyright Springer Verlag Berlin Heidelberg 2004

Bottom-Up Design
• In a bottom up design, many of the

basic components already exist. These
are stand alone systems which need
to be integrated into new systems.

• The components do not necessarily
cease to work as stand alone
components. Often old applications
continue running at the same time as
new applications.

• This approach has a wide application
because the underlying systems
already exist and cannot be easily
replaced.

• Much of the work and products in this
area are related to middleware, the
intermediate layer used to provide a
common interface, bridge
heterogeneity, and cope with
distribution.

Legacy systems

New
application

Legacy
applicati

on

Copyright Springer Verlag Berlin Heidelberg 2004

5

Bottom-Up Design
bottom-up design

PL-A PL-B
PL-C

AL-A
AL-B

AL
-D

AL
-C

bo
tt

om
-u

p
ar

ch
it
ec

tu
re

AL-A AL
-D

AL
-C AL-B

PL-A
PL-B

PL-C

wrapper wrapper wrapper
wrapper wrapperwrapper

legacy
application

legacy
application

legacy
system

legacy
system

legacy
system

Copyright Springer Verlag Berlin Heidelberg 2004

Bottom-Up Design

presentation
layer

resource management
layer

application logic
layer

client

in
fo

rm
at

io
n

sy
s t

em

1. define access channels
and client platforms

2. examine existing resources
and the functionality
they offer

3. wrap existing resources
and integrate their functionality
into a consistent interface

4. adapt the output of the
application logic so that it
can be used with the required
access channels and client
protocols

bottom-up design

Copyright Springer Verlag Berlin Heidelberg 2004

N-Tier Architectures
• N-tier architectures result

from connecting several
three tier systems to each
other

• The addition of the Web
layer led to the notion of
“application servers”, which
was used to refer to
middleware platforms
supporting access through
the Web

client

resource management
layer

application logic
layer

information system

middleware

presentation
layer

Web server

Web browser

HTML filter

Copyright Springer Verlag Berlin Heidelberg 2004

6

INTERNET

FIREWALL

LAN

Web
server
cluster

LAN,
gateways

LAN

internal
clients

LAN

middleware
application

logic

resource
management

layer
database
server

LAN

middleware
application

logic

additional resource
management layers

LAN

Wrappers
and

gateways

file
server

application

N-tier In reality

Copyright Springer Verlag Berlin Heidelberg 2004

Blocking or Synchronous Interaction
• Traditionally, information

systems use blocking calls
Synchronous interaction
requires both parties to be
“on-line”: the caller makes a
request, the receiver gets the
request, processes the
request, sends a response, the
caller receives the response.

• The caller must wait until the
response comes back. but the
interaction requires both client
and server to be “alive” at the
same time

Call
Receive
Response

Answer idle time

Disadvantages due to
synchronization:
• Connection overhead
• Higher probability of

failures
• Difficult to identify and

react to failures
• It is not really practical for

complex interactions

client server

Copyright Springer Verlag Berlin Heidelberg 2004

Overhead of Synchronism
• Need to maintain a session

between the caller and the
receiver.

• Maintaining sessions is
expensive. There is also a limit
on how many sessions can be
active at the same time

• For this reason, client/server
systems often resort to
connection pooling to optimize
resource utilization
• Have a pool of open

connections
• Allocate connections as

needed
• Synchronous interaction

requires a context for each call
and a context management
system for all incoming calls.

request()

do with answer

receive
process
return

session
duration

request()

do with answer

receive
process
return

Context is lost
Needs to be restarted!!

Copyright Springer Verlag Berlin Heidelberg 2004

7

Failures In Synchronous Calls
• If the client or the server fail,

the context is lost.
• If the failure occurred before

1, nothing has happened
• If the failure occurs after 1

but before 2 (receiver
crashes), then the request is
lost

• If the failure happens after 2
but before 3, side effects may
cause inconsistencies

• If the failure occurs after 3
but before 4, the response is
lost but the action has been
performed (do it again?)

• Who is responsible for finding
out what happened?

• Finding out when the failure
took place may not be easy. If
there is a chain of invocations
the failure can occur anywhere
along the chain.

request()

do with answer

receive
process
return

1
2

34

request()

do with answer
timeout

try again

do with answer

receive
process
return

1
2

3

receive
process
return

2’

3’
Copyright Springer Verlag Berlin Heidelberg 2004

Two Solutions

ENHANCED SUPPORT
• Client/Server systems

and middleware
platforms provide a
number of mechanisms
to deal with the problems
created by synchronous
interaction:
• Transactional interaction
• Service replication and

load balancing

ASYNCHRONOUS INTERACTION
• Using asynchronous

interaction, the caller sends a
message that gets stored
somewhere until the receiver
reads it and sends a response.
The response is sent in a
similar manner

• Asynchronous interaction can
take place in two forms:
• Non-blocking invocation
• Persistent queues

Copyright Springer Verlag Berlin Heidelberg 2004

Message Queuing
• Reliable queuing is an

excellent complement to
synchronous interactions:
• Suitable to modular design:

the code for making a request
can be in a different module
(even a different machine!)
than the code for dealing with
the response

• Easier to design sophisticated
distribution modes and it also
helps to handle
communication sessions in a
more abstract way

• More natural way to
implement complex
interactions between
heterogeneous systems

do with answerdo with answer

request()request()

receive
process
return

queue

queue

Copyright Springer Verlag Berlin Heidelberg 2004

8

This Lecture

• DBMS overview (continued)
• HTTP
• Cookies

Transactions

• A transaction is an atomic sequence of actions
• Each transaction must leave the system in a

consistent state (if system is consistent when
the transaction starts).

• The ACID Properties:
• Atomicity
• Consistency
• Isolation
• Durability

Concurrency Control for Isolation

(Start: A=$100; B=$100)

Consider two transactions:
• T1: START, A=A+100, B=B-100, COMMIT
• T2: START, A=1.06*A, B=1.06*B, COMMIT

The first transaction is transferring $100 from B’s account
to A’s account. The second transaction is crediting both
accounts with a 6% interest payment.

Database systems try to do as many operations
concurrently as possible, to increase performance.

9

Example (Contd.)

(Start: A=$100; B=$100)

• Consider a possible interleaving (schedule):
T1: A=A+$100, B=B-$100 COMMIT
T2: A=1.06*A, B=1.06*B COMMIT
End result: A=$106; B=$0

• Another possible interleaving:
T1: A=A+100, B=B-100 COMMIT
T2: A=1.06*A, B=1.06*B COMMIT
End result: A=$112; B=$6

The second interleaving is incorrect! Concurrency control of a database
system makes sure that the second schedule does not happen.

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing
property) even if the system crashes in
the middle of a transaction.

• Idea: Keep a log (history) of all actions
carried out by the DBMS while executing :
• Before a change is made to the database, the

corresponding log entry is forced to a safe
location.

• After a crash, the effects of partially executed
transactions are undone using the log.

Recovery

• A DBMS logs all elementary events on
stable storage. This data is called the log.

• The log contains everything that changes
data: Inserts, updates, and deletes.

• Reasons for logging:
• Need to UNDO transactions
• Recover from a systems crash

10

Recovery: Example

(Simplified process)
• Insert customer data into the database
• Check order availability
• Insert order data into the database
• Write recovery data (the log) to stable

storage
• Return order confirmation number to the

customer

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

Data Model

• A data model is a collection of concepts
for describing data.

• Examples:
• ER model (used for conceptual modeling)
• Relational model, object-oriented model,

object-relational model (actually implemented
in current DBMS)

11

The Relational Data Model

A relational database is a set of relations. Turing
Award (Nobel Price in CS) for Codd in 1980 for
his work on the relational model

• Example relation:
Customers(cid: integer, name: string, byear: integer, state: string)

cid name byear state
1 Jones 1960 NY
2 Smith 1974 CA
3 Smith 1950 NY

The Relational Model: Terminology

• Relation instance and schema
• Field (column)
• Record or tuple (row)
• Cardinality

cid name byear state
1 Jones 1960 NY
2 Smith 1974 CA
3 Smith 1950 NY

Customer Relation (Contd.)

• In your enterprise, you are more likely to have a
schema similar to the following:

Customers(cid, identifier, nameType, salutation,
firstName, middleNames, lastName,
culturalGreetingStyle, gender, customerType, degrees,
ethnicity, companyName, departmentName, jobTitle,
primaryPhone, primaryFax, email, website, building,
floor, mailstop, addressType, streetNumber,
streetName, streetDirection, POBox, city, state, zipCode,
region, country, assembledAddressBlock, currency,
maritalStatus, bYear, profession)

12

Product Relation

• Relation schema:
Products(pid: integer, pname: string, price: float,

category: string)

• Relation instance:
pid pname price category

1 Intel PIII-700 300.00 hardware
2 MS Office Pro 500.00 software
3 IBM DB2 5000.00 software
4 Thinkpad 600E 5000.00 hardware

Transaction Relation

• Relation schema:
Transactions(

tid: integer,
tdate: date,
cid: integer,
pid: integer)

• Relation instance:

tid tdate cid pid
1 1/1/2000 1 1
1 1/1/2000 1 2
2 1/1/2000 1 4
3 2/1/2000 2 3
3 2/1/2000 2 4

The Object-Oriented Data Model

• Richer data model. Goal: Bridge impedance
mismatch between programming languages and
the database system.

• Example components of the data model:
Relationships between objects directly as
pointers.

• Result: Can store abstract data types directly in
the DBMS
• Pictures
• Geographic coordinates
• Movies
• CAD objects

13

Object-Oriented DBMS

• Advantages: Engineering applications
(CAD and CAM and CASE computer aided
software engineering), multimedia
applications.

• Disadvantages:
• Technology not as mature as relational DMBS
• Not suitable for decision support, weak

security
• Vendors are much smaller companies and

their financial stability is questionable.

Object-Oriented DBMS (Contd.)

Vendors:
• Gemstone (www.gemstone.com)
• Objectivity (www.objy.com)
• ObjectStore (www.objectstore.net)
• POET (www.poet.com)
• Versant (www.versant.com, merged with POET)
Organizations:
• OMG: Object Management Group

(www.omg.org)

Object-Relational DBMS

• Mixture between the object-oriented and
the object-relational data model
• Combines ease of querying with ability to

store abstract data types
• Conceptually, the relational model, but every

field

• All major relational vendors are currently
extending their relational DBMS to the
object-relational model

14

Query Languages

We need a high-level language to describe and
manipulate the data

Requirements:
• Precise semantics
• Easy integration into applications written in

C++/Java/Visual Basic/etc.
• Easy to learn
• DBMS needs to be able to efficiently evaluate

queries written in the language

Relational Query Languages

• The relational model supports simple,
powerful querying of data.
• Precise semantics for relational queries
• Efficient execution of queries by the DBMS
• Independent of physical storage

SQL: Structured Query Language

• Developed by IBM (System R) in the
1970s

• ANSI standard since 1986:
• SQL-86
• SQL-89 (minor revision)
• SQL-92 (major revision, current standard)
• SQL-99 (major extensions)

• More about SQL in the next lecture

15

Example Query
• Example Schema:

Customers(
cid: integer,
name: string,
byear: integer,
state: string)

• Query:
SELECT

Customers.cid,
Customers.name,
Customers.byear,
Customers.state

FROM Customers
WHERE Customers.cid = 3

cid name byear state
3 Smith 1950 NY

cid nam e byear state
1 Jones 1960 N Y
2 Sm ith 1974 CA
3 Sm ith 1950 N Y

Example Query

SELECT
Customers.cid,
Customers.name,
Customers.byear,
Customers.state

FROM Customers
WHERE

Customers.cid = 1 cid name byear state
1 Jones 1960 NY

cid name byear state
1 Jones 1960 NY
2 Smith 1974 CA
3 Smith 1950 NY

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

16

Integrity Constraints

• Integrity Constraints (ICs): Condition that
must be true for any instance of the
database.
• ICs are specified when schema is defined.
• ICs are checked when relations are modified.
• A legal instance of a relation is one that

satisfies all specified ICs.
• DBMS should only allow legal instances.

• Example: Domain constraints.

Primary Key Constraints

• A set of fields is a superkey for a relation if no
two distinct tuples can have same values in all
key fields.

• A set of fields is a key if the set is a superkey,
and none of its subsets is a superkey.

• Example:
• {cid, name} is a superkey for Customers
• {cid} is a key for Customers

• Where do primary key constraints come from?

Primary Key Constraints (Contd.)

• Can there be more than one key for a
relation?

• What is the maximum number of
superkeys for a relation with k fields?

17

Where do ICs Come From?

• ICs are based upon the semantics of the real-
world enterprise that is being described in the
database relations.

• We can check a database instance to see if an
IC is violated, but we can NEVER infer that an
IC is true by looking at an instance.
• An IC is a statement about all possible instances!
• From example, we know state cannot be a key, but

the assertion that cid is a key is given to us.
• Key and foreign key ICs are very common; a

DBMS supports more general ICs.

Security

• Secrecy: Users should not be able to see
things they are not supposed to.
• E.g., A student can’t see other students’

grades.
• Integrity: Users should not be able to

modify things they are not supposed to.
• E.g., Only instructors can assign grades.

• Availability: Users should be able to see
and modify things they are allowed to.

Why Store Data in a DBMS?

• Benefits
• Transactions (concurrent data access,

recovery from system crashes)
• High-level abstractions for data access,

manipulation, and administration
• Data integrity and security
• Performance and scalability

18

DBMS and Performance

• Efficient implementation of all database
operations

• Indexes: Auxiliary structures that allow fast
access to the portion of data that a query is
about

• Smart buffer management
• Query optimization: Finds the best way to

execute a query
• Automatic high-performance concurrent query

execution, query parallelization

Summary Of DBMS Benefits

• Transactions
• ACID properties, concurrency control, recovery

• High-level abstractions for data access
• Data models

• Data integrity and security
• Key constraints, foreign key constraints, access

control

• Performance and scalability
• Parallel DBMS, distributed DBMS, performance tuning

Technologies at the Three Tiers

• Internet concepts
• URIs
• The HTTP Protocol

• The presentation layer
• HTML, HTML Forms
• JavaScript
• Style Sheets
• Cookies

19

Uniform Resource Identifiers

• Uniform naming schema to identify resources on
the Internet

• A resource can be anything:
• Index.html
• mysong.mp3
• picture.jpg

• Example URIs:
http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Structure of URIs

http://www.cs.wisc.edu/~dbbook/index.html

• URI has three parts:
• Naming schema (http)
• Name of the host computer (www.cs.wisc.edu)
• Name of the resource (~dbbook/index.html)

• URLs are a subset of URIs

HTTP Overview

• HTTP: HyperText Transfer Protocol
• Developed by Tim Berners Lee, 1990
• Client/Server Architecture:

• Client requests a document
• Example clients: IE, Netscape, etc.

• Server returns the document
• Example servers: Apache, IIS

20

Watch HTTP

• Telnet:
• telnet www.yahoo.com 80
• GET /

• See your requests:
• http://www.schroepl.net/cgi-bin/http_trace.pl

Example HTTP Session

Client sends request Server sends response

Client requests the following URL:
http://hypothetical.ora.com:80/
Anatomy of the Request:

http:// HyperText Transfer Protocol; other options: ftp,
mailto.
hypothetical.ora.com: host name
:80: Port Number. 80 is reserved for HTTP. Ports can
range from: 1-65,535
/ Root document

The Client Request

Actual Browser Request:
GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap,
image/ jpeg, image/pjpeg, */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible;
MSIE 5.01; Windows NT)

Host: hypothetical.ora.com
Connection: Keep-Alive

21

Anatomy of the Client Request

• GET / HTTP/1.1
• Requests the root / document.
• Specifies HTTP version 1.1.
• HTTP Versions: 1.0 and 1.1 (more on this later…)

• Accept: image/gif, image/x-xbitmap, image/
jpeg, image/pjpeg, */*
• Indicates what type of media the browser will accept.

• Accept-Language: en-us
• Browser’s preferred language

• Accept-Encoding: gzip, deflate
• Accepts compressed data (speeds download times.)

Anatomy of the Client Request

• User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT)
• Indicates the browser type.

Host: hypothetical.ora.com
• Required for HTTP 1.1
• Optional for HTTP 1.0
• A Server may host multiple hostnames. Hence, the

browser indicates the host name here.
Connection: Keep-Alive
• Enables “persistent connections”. Faster

performance (more later…)

Server Response

HTTP/1.1 200 OK
Date: Mon, 24 Sept 2001 20:54:26 GMT
Server: Apache/1.3.6 (Unix)
Last-Modified: Mon, 24 Sept 2001 14:06:11 GMT
Content-length: 327
Connection: close
Content-type: text/html
<title>Sample Homepage</title>

<h1>Welcome</h2>Hi there, this is a simple web page.

Granted, it may not be as elegant as some other
web pages you've seen on the net, but there are
some common qualities...

22

Anatomy of Server Response

HTTP/1.1 200 OK
• Server Status Code
• Code 200: Document was found
• We will examine other status codes shortly.

Date: Mon, 24 Sept 2001 20:54:26 GMT
• Date on the server.
• GMT (Greenwich Mean Time)

Last-Modified: Mon, 24 Sept 2001 14:06:11 GMT
• Indicates the time when the document was last modified.
• Very useful for browser caching.
• If a browser already has the page in its cache, it may not need

to request the whole document again (more later…)

Anatomy of Server Response

Content-length: 327
• Number of bytes in the document response.

Connection: close
• Indicates that the server will close the connection.
• If the client wants to send another request, it will

need to open another connection to the server.
Content-type: text/html
• Indicates the MIME Type of the return document.
• Multi-Purpose Internet Mail Extensions
• Enables web servers to return binary or text files.
• Other MIME Categories:

audio, video, images, xml

Anatomy of Server Response

The actual HTML document:

<HTML>
<HEAD>

<TITLE>Cornell University - CS/CIS 330</TITLE>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<meta NAME="Author" CONTENT="Scott Selikoff">
<meta NAME="robots" content="index,follow">

</HEAD>

<NOFRAMES>
<h1 align=center>

23

Getting Objects

Once a browser receives an HTML page, it
makes separate connections to retrieve
different objects within the page.

Client
Web
Browser

Web
Server

Give me /index.html

Here you go...

Now, give me logo.gif

Here you go...

HTTP 1.0 v. 1.1

HTTP 1.0:
• For each request, you must open a new

connection with the server.

HTTP 1.1
• For each request, the default action is to

maintain an open connection with the server.
• Faster, Persistent Connections
• Supported by most browsers and servers.

Example: HTTP 1.0 v. 1.1

HTTP 1.0: Get HTML Page plus Images
• Open Connection: GET /index.html
• Open Connection: GET /logo.gif
• Open Connection: GET /button.gif

HTTP 1.1: Get HTML Page plus Images
• Open Persistent Connection: GET /index.html
• GET /logo.gif
• GET /button.gif

24

Client Requests

Every client request includes three parts:
• Method: Used to indicate type of request,

HTTP Version and name of requested
document.

• Header Information: Used to specify browser
version, language, etc.

• Entity Body: Used to specify form data for
POST requests.

Client Methods

• GET and POST: We will see them later when we
discuss HTML forms.

• HEAD:
• Similar to GET, except that the method requests only

the header information.
• Server will return date-modified, but will not return

the data portion of the requested document.
• Useful for browser caching.
• For example:

• If browser contains a cached version of a page, it issues a
head request.

• If document has not been modified recently, use cached
version.

Server Responses

Every server response includes three
parts:
• Response line: HTTP version number, three

digit status code, and status message.
• Header: Information about the server
• Entity Body: The actual data.

25

Server Status Codes

100-199 Informational
200-299 Client Request Successful
300-399 Client Request Redirected
400-499 Client Request Incomplete
500-599 Server Errors

Some Important Status Codes

200: OK
Request was successful.

301: Moved Permanently
Server redirects client to a new URL.

404 Not Found
Document does not exist

500 Internal Server Error
Error within the Web Server

HTTP Is Stateless

• What does this mean:
• No “sessions”
• Every message is completely self-contained
• No previous interaction is “remembered” by the protocol
• Tradeoff between ease of implementation and ease of

application development: Other functionality has to be built on
top

• Implications for applications:
• Any state information (shopping carts, user login-information)

need to be encoded in every HTTP request and response!
• Popular methods on how to maintain state:

• Cookies
• Dynamically generate unique URL’s at the server level

