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gaussian 1.0; noise 0.005

gaussian 1.0; no noise

motion blur; no noise

motion blur; noise 0.005



motion blur gaussian, stdev = 1.0

singular value vs. index, 32x32 inverse problem
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gaussian 1.0; noise 0.005; r = 1024, 900, 400

gaussian 1.0; no noise; r = 1024

motion blur; no noise; r = 1024

motion blur; noise 0.005; r = 1024, 990, 550
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Figure 1 High quality single image motion-deblurring. The left sub-figure shows one captured image using a hand-held camera under dim light. It is
severely blurred by an unknown kernel. The right sub-figure shows our deblurred image result computed by estimating both the blur kernel and the
unblurred latent image. We show several close-ups of blurred/unblurred image regions for comparison.

Abstract

We present a new algorithm for removing motion blur from a sin-
gle image. Our method computes a deblurred image using a unified
probabilistic model of both blur kernel estimation and unblurred
image restoration. We present an analysis of the causes of common
artifacts found in current deblurring methods, and then introduce
several novel terms within this probabilistic model that are inspired
by our analysis. These terms include a model of the spatial random-
ness of noise in the blurred image, as well a new local smoothness
prior that reduces ringing artifacts by constraining contrast in the
unblurred image wherever the blurred image exhibits low contrast.
Finally, we describe an efficient optimization scheme that alternates
between blur kernel estimation and unblurred image restoration un-
til convergence. As a result of these steps, we are able to produce
high quality deblurred results in low computation time. We are even
able to produce results of comparable quality to techniques that re-
quire additional input images beyond a single blurry photograph,
and to methods that require additional hardware.

Keywords: motion deblurring, ringing artifacts, image enhance-
ment, filtering

1 Introduction

One of the most common artifacts in digital photography is motion
blur caused by camera shake. In many situations there simply is not

∗http://www.cse.cuhk.edu.hk/%7eleojia/projects/motion%5fdeblurring/

enough light to avoid using a long shutter speed, and the inevitable
result is that many of our snapshots come out blurry and disappoint-
ing. Recovering an un-blurred image from a single, motion-blurred
photograph has long been a fundamental research problem in digital
imaging. If one assumes that the blur kernel – or point spread func-
tion (PSF) – is shift-invariant, the problem reduces to that of image
deconvolution. Image deconvolution can be further separated into
the blind and non-blind cases. In non-blind deconvolution, the mo-
tion blur kernel is assumed to be known or computed elsewhere;
the only task remaining is to estimate the unblurred latent image.
Traditional methods such as Weiner filtering [Wiener 1964] and
Richardson-Lucy (RL) deconvolution [Lucy 1974] were proposed
decades ago, but are still widely used in many image restoration
tasks nowadays because they are simple and efficient. However,
these methods tend to suffer from unpleasant ringing artifacts that
appear near strong edges. In the case of blind deconvolution [Fer-
gus et al. 2006; Jia 2007], the problem is even more ill-posed, since
both the blur kernel and latent image are assumed unknown. The
complexity of natural image structures and diversity of blur kernel
shapes make it easy to over- or under-fit probabilistic priors [Fergus
et al. 2006].

In this paper, we begin our investigation of the blind deconvolution
problem by exploring the major causes of visual artifacts such as
ringing. Our study shows that current deconvolution methods can
perform sufficiently well if both the blurry image contains no noise
and the blur kernel contains no error. We therefore observe that a
better model of inherent image noise and a more explicit handling
of visual artifacts caused by blur kernel estimate errors should sub-
stantially improve results. Based on these ideas, we propose a uni-
fied probabilistic model of both blind and non-blind deconvolution
and solve the corresponding Maximum a Posteriori (MAP) prob-
lem by an advanced iterative optimization that alternates between
blur kernel refinement and image restoration until convergence. Our
algorithm can be initialized with a rough kernel estimate (e.g., a
straight line), and our optimization is able to converge to a result
that preserves complex image structures and fine edge details, while
avoiding ringing artifacts, as shown in Figure 1.

To accomplish these results, our technique benefits from three main
contributions. The first is a new model of the spatially random dis-
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