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One of the big applications of linear systems, right up there with Newton-
type iterations, is solving least squares problems. Generally, these are problems
where we want to fit a model to some data but we don’t expect an exact match.
This is unlike the problems we solved earlier in the course having to do with
computing interpolating polynomials for a set of points, where we insisted on
an exact match at all data points.

1 Linear regression

The canonical starting point for least squares is linear regression: you have data
that you think would fit a linear model, except that it’s become contaminated
by some random errors (maybe they are rounding errors, or maybe these are
physical measurements with their own uncertainty).

We want to minimize the distances from the points to the lines. I’ll assume
the x coordinates of the points are exact, so the distance is measured along the
y direction. The difference between the model and the data,

ri = c1xi + co − yi,

is called the “residual error” or just “residual” for point i. It’s clear we are in
the business of balancing these errors against one another. If we think of the
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residuals all together as a residual vector,

r =

 r1

...
rm

 .

Balancing errors against one another now boils down to choosing how to define
the “size” of r—that is, the choice of norm. For instance, minimizing ‖r‖1
corresponds to minimizing the sum-total deviation of the data from the model
(close points count the same as as far points); ‖r‖∞ corresponds to maximum
error (only the farthest point matters); and ‖r‖2 is somewhere in between. The
2-norm is the universally popular choice—partly because it can be proven to be
optimal under certain assumptions about the nature of the errors, but usually
there is an ulterior motive: the 2-norm is mathematically convenient, as we’ll
see in a moment. Linear least squares (LLS) problems, in which the residuals
are linear functions of the parameters, are especially easy to solve.

For the line fitting problem (the “linear” in LLS does not refer to this line!)
we have:

E(c1, c0) = ‖r‖22 =
m∑

i=1

(c1xi + c0 − yi)
2

The error is a sum of squares (hence “least squares”). I’ve taken the liberty
of defining the error to be the square of the 2-norm, since the smallest-norm
residual also has the smallest squared norm.

To minimize, look for a stationary point (in this setting, the solution will
turn out to be a minimum) by setting the two partial derivatives of E to zero:

∂E

∂c1
=

m∑
i=1

2xi (c1xi + c0 − yi) = 2

[
ci

∑
i

x2
i + c0

∑
i

xi −
∑

i

xiyi

]
= 0

∂E

∂c0
=

m∑
i=1

2 (c1xi + c0 − yi) = 2

[
ci

∑
i

xi + c0m−
∑

i

yi

]
= 0

We can recognize this as a 2x2 linear system in the variables c1 and c0! That
we know how to solve already.

In matrix form, this is[∑
x2

i

∑
xi∑

xi m

] [
c1

c0

]
=
[∑

xiyi∑
yi

]
(1)

So this LLS problem reduced to a linear system—easy! There is a unique
solution (unless the matrix is singular), it is easy to find, and it is always a
minimum.

2 Cubic regression

Let’s do this again but with a polynomial model this time: I want to fit a cubic
to m data points, with m > 4, so unlike earlier in the course we don’t expect
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an exact solution.

We saw before that fitting high degree polynomials to a lot of points is a
dicey business; if we want a smooth curve it’s better to use a low-degree model
and accept some discrepancy.

Now the problem looks like this:

ri = c3x
3
i + c2x

2
i + c1xi + c0 − yi

and the system that results from setting the four partial derivatives to zero is:

E(c3, . . . , c0) =
m∑

i=1

(
c3x

3
i + c2x

2
i + c1xi + c0 − yi

)2
∂E

∂c3
= 2

m∑
i=1

x3
i

(
c3x

3
i + c2x

2
i + c1xi + c0 − yi

)
= 2

[
c3

∑
x6

i + c2

∑
x5

i + c1

∑
x4

i + c0

∑
x3

i −
∑

x3
i yi

]
= 0

∂E

∂c2
= 2

[
c3

∑
x5

i + c2

∑
x4

i + c1

∑
x3

i + c0

∑
x2

i −
∑

x2
i yi

]
= 0

∂E

∂c1
= 2

[
c3

∑
x4

i + c2

∑
x3

i + c1

∑
x2

i + c0

∑
xi −

∑
xiyi

]
= 0

∂E

∂c0
= 2

[
c3

∑
x3

i + c2

∑
x2

i + c1

∑
xi + c0m−

∑
yi

]
= 0

Lo and behold, it is another linear system, this time a 4 by 4 system. The higher
powers of x didn’t enter in at all: it is only the values of these functions at the
data points that matter, and the minimization is with respect to the cis, which
always appear linearly. (Note, by the way, the copy of the matrix for linear
regression sitting in the lower right corner of this system).

In this case the system looks like this:
∑

x6
i

∑
x5

i

∑
x4

i

∑
x3

i∑
x5

i

∑
x4

i

∑
x3

i

∑
x2

i∑
x4

i

∑
x3

i

∑
x2

i

∑
x1

i∑
x3

i

∑
x2

i

∑
x1

i

∑
x0

i




c3

c2

c1

c0

 =


∑

x3
i yi∑

x2
i yi∑

x1
i yi∑

x0
i yi

 (2)
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3 Normal equations

Each of these two systems can be expressed more compactly. First the linear
regression system: the original problem is

min
c
‖Ac− y‖22

where

A =
[
x 1

]
c =

[
c1

c0

]
and x (resp. y) is the vector of all the xis (resp. yis) and 1 is a vector of all
ones (ones(m,1)).

With these definitions, you can easily verify that the linear system in (1) is

AT Ac = AT y.

The same is also true of the larger system in (2). In that system:

A =
[
v3 v2 x 1

]
c =


c3

c2

c1

c0


where, in Matlab notation, vj = x .* j. You can easily verify that the linear
system that resulted from setting the partials to zero in that case also has the
form AT Ac = AT y.

This linear system is known as the normal equations for the least squares
system Ac ≈ y.

Sources

• Our textbook: Cheney & Kincaid, Numerical Mathematics and Comput-
ing, 6e. Section 12.1.
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