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When we start to think about solving some numerical problem, we should
be careful only to attempt to solve problems that actually have solutions. (It’s
surprisingly often that you can get some kind of useful answer to a problem
that doesn’t really have a solution, but this is a sure way to set yourself up for
unexpected difficulties!) Being possible to solve numerically is a little different
from being possible to solve analytically.

1 Ill-posed and ill-conditioned problems

In the 1920s Hadamard proposed a famous set of criteria for a problem to be
well posed:

• The problem should have a solution.

• The solution should be unique.

• The solution should depend continuously on the data.

His context was mathematical physics, but the same idea applies in numerical
computation. A pure mathematician may be happy with just #1 and #2, but if
you have a solution that jumps around wildly as you change the data that goes
into the problem, then you’re sunk if the data is approximate (either because it
was measured in the real world or because it was rounded off in a floating point
number system).

A problem that meets Hadamard’s conditions is known as well posed, and a
problem that doesn’t is ill posed.

Many interesting problems are ill posed when stated straightforwardly. For
instance, suppose we drop a particle into a turbulent creek and look at where it
crosses some line a little way downstream. Even if the experiment is perfectly
repeatable and we can get the flow to be the same every time, the chaotic behav-
ior will mean that tiny changes in initial position will cause completely different
results, so that we can’t hope to make meaningful individual predictions. (We
might be able to make probabilistic predictions, though: maybe we can com-
pute the distribution of ending locations for particles that begin in some finite
interval of starting points.)
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Often ill-posed problems are one sort or another of inverse problem in which
we’re basically trying to run some physical system backward. For example, given
an out-of-focus photograph, you might like to determine the original, sharp scene
that the camera was looking at. But changes in small details of the scene will
be blurred away by the out-of-focus camera, so that information is lost and we
can’t hope to get it back. In this case the problem probably fails condition #2
because there are many scenes, differing only in tiny details, that would lead to
the same out-of-focus image.

In practical situations we care not just whether a problem is well-posed,
technically, but also how well-posed it is—or whether it is sufficiently well posed
that we can solve it using a particular method. The term for this question is
problem conditioning: a well-conditioned problem is one where the answer is
clearly determined by the data, and an ill-conditioned problem is one where
tiny errors can cause large changes in the answer, so that the answer can be
quite uncertain even when the data is good.

2 Conditioning in linear systems

Enough about terminology and generalities. Let’s look at a particular kind of
problem. Suppose we’re solving a linear system

Ax = b

for x with A and b given, and we need some particular accuracy in x. How
precisely do we need to know b? Or, alternatively, given a particular degree
of uncertainty in b, how much uncertainty is there in x? Furthermore, if A is
also uncertain, how does that enter into the problem? What we really want to
know is how uncertainty in the problem—errors in A and b—propagates into
the solution x.

In particular, for this lecture we are interested in the worst-case error: what
is the error in the solution for the least favorable choice of b.

[Before we go on: a refresher on vector and matrix norms. (See Cheney &
Kincaid, sec. 8.2, pp. 319–320, for a fuller explanation.) In this lecture we are
in the business of finding bounds on errors, and inequalities involving norms
are the available tools. In particular, there is the triangle inequality for vector
norms (‖x + y‖ ≤ ‖x‖ + ‖y‖) and the definition of a matrix norm (‖A‖ =
maxx ‖Ax‖/‖x‖, so ‖Ax‖ ≤ ‖A‖ ‖x‖).]

Suppose we replace the right hand side b with b+ δb and solve the system

A(x+ δx) = b+ δb

to find the resulting error δx. Since Ax = b, we can cancel Ax with b and are
left with

Aδx = δb.

That is, the errors in x and b are related in the same way their values are. For
a given b we can bound the worst-case error in δx:

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ ‖δb‖
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Since a matrix norm measures maximum stretching, or maximum magnification
of the length of vectors, under a transformation, the norm of A−1 plays an
important role because it limits the magnification of errors in b. What property
of A does this measure? It is the maximum value of

‖A−1‖ = max
b

‖A−1b‖
‖b‖

= max
x

‖x‖
‖Ax‖

= 1
/

min
x

‖Ax‖
‖x‖

so it is also measuring the maximum shrinkage in a vector when multiplied by
A. Later when we look at the SVD, we’ll call this factor σn, the last singular
value of A. So our bound is that errors in b are magnified by (at most) a factor
of 1/σn (if we measure error in the 2-norm, which we will).

There’s a weakness in this way of measuring error: if you change the units
of measurement it will change the error bound. If A was based on measuring x
in meters, and we switch to measuring it in millimeters, ‖A−1‖ will go up by a
factor of 1,000. It’s true that the numbers in x are more uncertain when they
are measured in millimeters, but that doesn’t really have any bearing on the
“real” accuracy of the answer.

For this reason we usually use relative error for these kinds of arguments.
Rather than ask about the errors δx and δb we ask about the errors relative to
the magnitudes of their values:

δx

‖x‖
,

δb

‖b‖

The magnification factor for relative error is related to the “raw” magnification
factor ‖A−1‖:

‖δx‖ ≤ ‖A−1‖ ‖δb‖ ; ‖b‖ ≤ ‖A‖‖x‖ =⇒ 1
‖x‖
≤ ‖A‖
‖b‖

so
δx

‖x‖
≤ ‖A‖‖A−1‖ δb

‖b‖

So relative error is magnified by at most the product of the norms of A and its
inverse. The norm of A−1 gives us an upper bound for the size of the error, and
the norm of A gives us a lower bound for the size of x (we want a lower bound
because the relative error in x gets larger when ‖x‖ gets smaller.

Because relative error is the most generally used error measure, the magni-
fication factor for relative error gets its own name, the condition number:

κ(A) = ‖A‖‖A−1‖

If we think of it geometrically, the condition number is the axis ratio that
tells how flattened a sphere gets when we transform it by A:
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Some quick facts about κ(A):

κ(αA) = κ(A)

κ(A−1) = κ(A)

κ(AT ) = κ(A)

3 Propagation of errors from A to x

We will not have time to discuss this, so let me cut to the punch line: the condi-
tion number also bounds the magnitude of error in x relative to the magnitude
of an error in A.
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