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Linear systems

We have been looking at systems

yi = fi(x1, . . . , xn) for i = 1 . . . n

or
y = f(x) where f : IRn → IRn

which, when f is linear, read

Ax = b where A ∈ IRn×n
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Square linear systems

The equation Ax = b with A an n× n matrix is a square linear
system. Generally we expect this system to have exactly one
solution.

A x b=

(If A is singular, there might be no solution or many solutions.)
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Non-square systems

If A is n×m, and n 6= m, the system is called (surprise!) non-square
or rectangular and is generally either overdetermined or
underdetermined.

A
x

b=
A

x
b=

overdetermined underdetermined

(If A is singular, you can't necessarily tell whether a system is over- or
underdetermined from its shape.)
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Overdetermined systems

Today, we're interested in the overdetermined case: m > n, more
knowns than unknowns.

=

Ax ≈ b

Generally such an equation will have no exact solution, and we are in
the business of �nding a compromise.
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Linear regression

Experiment to �nd thermal expansion coef�cient with metal bar and
a torch:

• measure temperature of bar, record as T1.
• measure length of bar, record as L1.
• crank up heat, wait for a bit.
• measure temperature T2 and length L2.
• repeat for many trials.

The data is n pairs (Ti, Li).

The hypothesis is that L(T ) = L0(1 + αT ), where L0 is the bar's
nominal length, and we want to estimate α.

Cornell CS 322 Linear Least Squares I 7



Fitting Applications Solving Trouble Summary

Linear regression

To put this in the standard form, we have a set of given data points
(xi, yi) and we believe that y = mx + b. (Here x is T , y is L, and m
is L0α.)

We believe that if there were no experimental uncertainty the model
would �t the data exactly, but since there is noise the best we can do
is minimize error. The problem is

min
m,b

∑
i

(mxi + b− yi)2

To make this look like our standard problem we use the HW2 trick:

mx + b =
[
x 1

] [
m
b

]
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Linear regression

Stacking the data points into a matrix results in:

min
m,b

∥∥∥∥∥∥∥
x1 1
...

xn 1

[
m
b

]
−

y1
...

yn


∥∥∥∥∥∥∥

2

which is a linear least squares problem in the standard form.
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Polynomial regression
Suppose the model we expect to �t our data (xi, yi) is a cubic
polynomial rather than a straight line:

p(x) = ax3 + bx2 + cx + d

We want to �nd a, b, c, and d to best match the data:

min
a,b,c,d

∑
i

(ax3
i + bx2

i + cxi + d− yi)2

Thinking of the coef�cients as variables and the variables as
coef�cients, we can write this:

min
a,b,c,d

∥∥∥∥∥∥∥∥
x3

1 x2
1 x1 1
...

x3
n x2

n xn 1




a
b
c
d

−
y1
...

yn


∥∥∥∥∥∥∥∥

2
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Fitting with basis functions

This same approach works for any set of functions you want to add
together to approximate some data:

yi ≈
∑

j

ajbj(xi)

This works for any bjs, such as monomials (which we just saw), sines
and cosines, etc.
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Economic prediction

So far we have looked at a single independent variable, with
complexity arising from the type of model. Some problems have
many independent variables.

Moler's problem 5.11 has an example of an economic application. We
would like to be able to predict total employment from a set of other
economic measures:

• x1: GNP implicit price de�ator
• x2: Gross National Product
• x3: Unemployment
• x4: Size of armed forces
• x5: Population
• x6: Year
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Economic prediction
We'd like to approximate y, the total employment, as a linear
combination of the others:

y ≈ β0 +
∑

j

βjxj

We have historical data available for many years, and so we can set up
a system with a row for each year, each of which reads

y =
[
1 x1 x2 x3 x4 x5 x6

]


β0

β1
...

β6


with more than 7 years of data, this will be an overdetermined
system that can be solved by least squares. Then y can be predicted
in future years for which only the xs are available.
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Least squares �tting

The basic approach is to look for an x that makes Ax close to b:

x∗ = min
x

distance(Ax,b).

How to measure distance?

Usually by the magnitude of the difference:

x∗ = min
x

size(Ax,b)

How we measure �size� determines what kind of answer we get.
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Least squares �tting

The default way to measure size is with a vector norm, such as the
familiar Euclidean distance (2-norm):

x∗ = min
x
‖Ax− b‖

which expands out to

x∗ = min
x

√∑
i

(ai · x− bi)2

= min
x

∑
i

(ai · x− bi)2.

Since we only care about the minimum value, we can drop the square
root, and our problem is to minimize the sum of squares.

Cornell CS 322 Linear Least Squares I 15



Fitting Applications Solving Trouble Summary

Why least squares?

Why are we using this sum-of-squares metric for error?

• Because it is the right norm for the problem?
maybe with some strong assumptions. . .

• Because it corresponds to a familiar notion of distance?
getting closer. . .

• Because it results in a problem that's really easy to solve?
bingo!

Don't let its elegance seduce you into thinking that a least squares
solution is the Right Answer for every �tting problem.
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Solving a 2× 1 least squares system

Let's look at an example for n = 1, m = 2:[
a1

a2

]
x ≈

[
b1

b2

]
or ax ≈ b

In this case we are taking a scalar multiple of a single vector a and
trying to come close to a point b.

Here is a picture of the situation:

ba
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Solving a 2× 1 least squares system

What is the closest point on this line to b?

ba

It is the orthogonal projection of b on to the line.
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Solving a 2× 1 least squares system

What is the closest point on this line to b?

ba

ax

It is the orthogonal projection of b on to the line.
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Solving a 2× 1 least squares system

What is the closest point on this line to b?

ba

ax
r

It is the orthogonal projection of b on to the line.
If ax∗ is the closest point to b, then the residual r = ax∗ − b must
be orthogonal to a:

a · r = 0 ; a · (ax∗ − b) = 0 ; a · ax∗ = a · b
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Solving a 2× 1 least squares system

So the 2× 1 case boils down to

a · ax∗ = a · b

Some interpretations of this:

• Residual is orthogonal to a.
• The vectors ax∗ and b have the same component in the a
direction.

• (If ‖a‖ = 1) x∗ is the component of b in the a direction.
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Solving a 3× 2 least squares system

Now we can graduate to the 3× 2 case:

Ax ≈ b or
[
a1 a2

]
x ≈ b or a1x1 + a2x2 ≈ b

Geometrically, this is �nding the point on the plane spanned by a1

and a2 that is closest to b.

b

a1

a2
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Solving a 3× 2 least squares system

Now we can graduate to the 3× 2 case:

Ax ≈ b or
[
a1 a2

]
x ≈ b or a1x1 + a2x2 ≈ b

Geometrically, this is �nding the point on the plane spanned by a1

and a2 that is closest to b.

b

a1

a2 Ax

r

Now the residual is orthogonal to the plane�which is to say, it is
orthogonal to both columns of A.
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Solving a 3× 2 least squares system

If A =
[
a1 a2

]
then being orthogonal to the columns of A is two

statements:
a1 · r = 0
a2 · r = 0

or
aT

1 r = 0

aT
2 r = 0

Another way to say this is

AT r = 0

and if we expand out r we get

AT (Ax− b) = 0 ; ATAx = ATb

This statement is known as the normal equations of the least-squares
system.
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Normal equations

For any n and m, the residual is orthogonal to all n the columns of
A. So the normal equations

ATAx = ATb

hold for any overdetermined system.

This equation is an n× n system that you can solve using, e.g., the
LU decomposition.

Note: we threw out the long dimension!
→ �tting a plane to a million 3D points is still a 3× 3 system.

Caution: This method is only for �easy� problems! (And hard
�tting problems come along more often than you might think.) More
on this later.
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Normal equations, alternate derivation

Here is another derivation some �nd easier to remember:

x∗ = min
x
‖Ax− b‖2 = min

x
(Ax− b)T (Ax− b)

At the minimum the derivative of ‖Ax− b‖2 with respect to x has
to be zero:

0 = ∇‖Ax− b‖2 = ∇
[
(Ax− b)T (Ax− b)

]
= ∇

[
xTATAx− 2xTATb + bTb

]
A little sleight of hand is involved in differentiating these matrix
expressions as if they were scalars (but write it out to verify):

0 = 2ATAx− 2ATb
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LLS in Matlab

Solving a LLS system in Matlab is simple:

x = A \ b

We've seen that the backslash operator solves square systems. For
an underdetermined system it computes the least squares solution
(using a method better than the normal equations).
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Multi-RHS least squares systems

As with square systems we can have a system

AX ≈ B

which amounts to a set of separate problems sharing the same
matrix.
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Dif�culties in least squares �tting

Fitting using least squares is elegant and ef�cient. But there are some
pitfalls:

• Sensitivity to outliers
◦ If uncertainties are truly Gaussian, least squares is optimal
◦ One bad point will completely break the result

• Choosing the right size parameter space
◦ too few parameters: model is underparameterized (does not �t
the data)

◦ too many parameters: over�tting (model distorts to
accommodate minor variations and noise)
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Summary

• Overdetermined systems have many applications, including many
�tting problems.

• When the problems are linear there is a very clean and simple
way to �nd the optimum, if we adopt the sum-of-squares error
metric.

• The normal equations convert an overdetermined system into a
square system
But only for easy problems! More stable methods later. . .
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