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Solving linear systems

We all know how to approach these systems by hand, taking
advantage of certain transformations we can apply without changing
the answer:

• Multiply both sides of an equation by a number
• Add or subtract two equations

In a system expressed as a matrix, these operations correspond to
scaling and combining rows of the matrix (as long as we do the same
thing to the RHS).

Cornell CS 322 Linear Systems I (part 2) 3



Gauss-Jordan LU Summary

Gauss-Jordan elimination

A procedure you may have learned for systematically eliminating
variables from a linear system.

• Subtract �rst equation from all others, scaled appropriately to
cancel the �rst variable.

• Subtract second equation from all others, again scaled
appropriately

◦ does not disturb the canceled �rst variable

• Continue with all other rows
• Answer can be read directly from reduced equations

Example from Moler p. 54.
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Gauss-Jordan example
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Gauss-Jordan in matrix operations

In matrix terms, why are these scaling and combination operations
allowed?

Ax = b

Ax− b = 0

Then for any �reasonable� matrixM:

M(Ax− b) = 0

holds if and only ifMx− b = 0. So the system withMA andMb is
equivalent to the system with A and b.

What isM for a Gauss-Jordan step?
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Row operations as matrix multiplication

For the �rst step of a 3× 3 system: 1
a11

−a21
a11

1
−a31

a11
1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

1 a+
12 a+

13

a+
22 a+

23

a+
32 a+

33


The row operations amount to multiplying by a specially designed
matrix to zero out A(2 : 3, 1).
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Row operations as matrix multiplication

The general case for step j in an n× n system:

Mj =


1 −a1j/ajj

. . .
...

1/ajj
...

. . .
−anj/ajj 1


In Matlab we could write (though we wouldn't formMj in practice):

M = eye(n);
M(:,j) = -A(:,j)/A(j,j);
M(j,j) = 1/A(j,j);
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Gauss-Jordan in matrix terms

Applying the row operations to the matrix and RHS amounts to
hitting a wide matrix containing A and b with a sequence of matrices
on the left:

Mn · · ·M2M1

[
A b

]
=

[
I x

]
M

[
A b

]
=

[
I x

]
(Recall that multiplying by a matrix on the left transforms the
columns, independently.) The sequence ofMjs (row operations)
reduces A to I and b to x.
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Gauss-Jordan in matrix terms

So this product matrixM is something that when multiplied by A
gives the identity. There's a name for that!

M = Mn · · ·M2M1 = A−1

The product of all the Gauss-Jordan matrices is the inverse of A.
This is another way to see whyMb = x.

In an implementation we wouldn't really form theMjs and multiply
them. Instead start with I and apply the same row operations we
apply to A.

Y0 = I ; Yk = MkYk−1  Yn = M
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Multiple right-hand sides

There might be more than one set of RHS values that are of interest.

• Geometry example: �nd domain points that map to a bunch of
range points

• Circuit example: solve same circuit with different source
voltages

• Radiosity example: solve energy balance with different emissions

Each of these examples requires solving many systems with the same
matrix; e.g. �nd x1,x2 such that

Ax1 = b1 and Ax2 = b2
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Multiple right-hand sides

It's easy to package a multi-RHS system as a matrix equation, using
the interpretation of matrix multiplication as transforming the
columns of the right-hand matrix:

A
[
x1 x2

]
=

[
b1 b2

]
AX = B

This kind of system is not any harder to solve than Ax = b; we just
use the same method but apply the operations to all the columns of
B at once.

Sometimes a system that you form from matrices that you are not
thinking of as a stack of columns surprises you by turning out to be a
multi-RHS system.
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Pivoting in Gauss-Jordan

In our G-J example, the second pivot was 0.1.

This led to a large multiplier (70 and 25) and big numbers in the
intermediate results where there were only small numbers in the
problem and in the solution.

Worse, we computed the RHS of row 2 as 6.1− 6.0. If the pivot was
10−6 this would result in complete loss of accuracy in single precision.

It wasn't obvious from the initial problem that this was coming!
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Pivoting in Gauss-Jordan

An extreme example [
0 1
1 0

] [
x1

x2

]
=

[
2
3

]
Obviously x1 = 3 and x2 = 2, but our G-J algorithm will not �gure
this out.
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Pivoting in Gauss-Jordan

Geometric intuition: G-J is adding a multiple of row i to the other
rows to get them into the plane perpendicular to the ith coordinate
axis.

r1

r1 r1

r2 r2 r2
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Gauss-Jordan LU Summary

Pivoting in Gauss-Jordan

Geometric intuition: G-J is shearing perpendicular to dimension i to
get the ith column onto the ith coordinate axis. (That is, it projects
each column in turn onto an axis.)

c1 c1 c1

c2 c2

c2 ?
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Pivoting in Gauss-Jordan

So the pivot problem is just a bad choice of arbitrary axis onto which
to project. The solution is simply to process the axes in a different
order.

To keep the bookkeeping simple we do this by reordering the rows
and then processing them in order.
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Pivoting in Gauss-Jordan

Can express this in matrices using a permutation matrix, which is a
matrix with a single 1 in each row and column.

Note that we don't physically move the rows ofA around in memory;
we just keep track of P so that we know where to �nd them.
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Computational complexity of G-J
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Gaussian elimination

We can do better than G-J on two fronts:

• Overall operation count
• G-J can't handle new RHS vectors that come along after the fact,
unless you compte the inverse.

Can �x both problems by only doing part of the work!
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Gaussian elimination

No need to reduce A all the way down to the identity�only to an
�easy� matrix to solve.

E.g. the version we used for the by-hand examples, without dividing
through to make the diagonal entries equal to 1, does this:

MA = D

where D is diagonal.
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Gaussian elimination

Further laziness leads to only operating on rows below the row we're
working on:

This is an upper triangular matrix�that is, it has zeros below the
diagonal (aij = 0 for i > j).
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Gaussian elimination

The reduced system can be solved easily:

From these equations we can compute the values of the unknowns,
starting from x3. Once we have x3 we substitute into the second
equation to get x2, and so forth. This is known as back substitution.
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The LU factorization

This approach can be expressed as a series of Gauss transformations
(slightly different from the ones used in G-J because they have zeros
above the diagonal):

Mn−1 · · ·M2M1A = U

MA = U

or

A = M−1
1 M−1

2 · · ·M−1
n−1U

A = LU

Multiplying together the inverseMs in this order serves simply to lay
out the multipliers in L, below the diagonal. Try it!
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Gaussian elimination

If we keep the multipliers around in this way, Gaussian elimination
becomes the LU factorization

A = LU

One way to think of this is that the matrix U is a reduced form of A,
ant L contains the instructions for how to reconstitute A from U.

An advantage over Gauss-Jordan is that we factor A with no RHS in
sight. Then, to solve LUx = b:

• solve Ly = b
• solve Ux = y.

(another way to say this is we compute U−1(L−1b)).
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The LU factorization
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The LU factorization
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Linear systems in Matlab

Solving a linear system in Matlab is simple: to solve Ax = b, write

x = A \ b

The idea behind this name for the operator is:

ax = b =⇒ x = b/a

except that for a matrix A you have to keep track of whether it is on
the left or the right. Since A is on the left, we use the backslash to
remind us that A is on the left and �in the denominator.�

Note that there is also a corresponding forward slash operator that
solves systems with A on the right (basically it solves a system with
AT ).
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Summary

• Gauss-Jordan is a method for directly solving systems
◦ Process the RHS with the matrix
◦ Can compute the inverse as a side effect

• LU factorization is both faster and more �exible
◦ Process matrix �rst, then RHSs as they come along
◦ Based on a factorization into two triangular matrices

• Both require pivoting for stability
• LU is a good default for general system solving
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