
CS 322 Project 3: Springies

out: Thursday 29 March 2007
code due: Wednesday 25 April 2007
writeup due: Friday 27 April 2007

1 Background

Many problems in the real world can be represented as systems of differential equations. A dif-
ferential equation is one where both variables and the derivatives of those variables can appear.
Differential equations can be classed into two broad categories: Ordinary Differential Equations
(ODEs) and Partial Differential Equations (PDEs). In an ODE, the only derivatives are with respect
to a single independent variable (usually, but not always, time), while in a PDE there can be multi-
ple independent variables and derivatives with respect to those independent variables. In addition,
differential equations have an order, which specifies the highest derivative present in the equation;
however, there is a mechanism for transforming any second or greater order ODE into an equivalent
first order ODE. In this assignment, we will be dealing exclusively with first order ODEs.

First order ODEs are typically written as

u̇ = G(u, t)

where we use the dot notation to signify derivatives with respect to the independent variable (in this
case time,t). We can convert higher order ODEs to first order ODEs through the following process:
suppose we have a second order ODE of the formü = G(u, u̇, t). We introduce a new variable
v = u̇. Note thatv̇ = ü. Thus, we can rewrite our second order ODE as

[
u̇
v̇

]
=

[
v

G(u,v, t)

]
Note that this only has first derivatives, and so it is now a first order ODE.

1.1 Particle Systems

One of the most well known ODEs is Newton’s Second Law of Motion. This is a second order ODE
that relates the force on a particle to the acceleration of the particle (the second derivative of position
with respect to time). More formally, on a single particle in one dimension this can be expressed as

f(x, ẋ, t) = mẍ

1



CS 322—Springies 2

wherex is the position of the particle,t is the independent variable corresponding to time,f is a
function that returns the force on the particle given a position, velocity and current time,m is the
mass of the particle, anḋx andẍ are the first and second derivatives ofx with respect to time. This
can be expanded to describe the motion of a collection ofn particles in 2D motion via the system
of equations

f(x, ẋ, t) = Mẍ

wherex is now a2n vector of the positions of all particles, and the masses of the particles are
collected in a diagonal square matrixM that is (not unsuprisingly) called themass matrix. For 2D
motion such as in this assignment,M is a2n × 2n diagonal matrix whereM2i,2i = M2i+1,2i+1 =
mi, i.e. the mass of particlei.

1.2 Forces

The force function above typically has many components, all summed together. Some common
forces are listed below

1.2.1 Gravity

Gravity is the simplest force — it is a constant force in the same direction as some vector (usually
down). The magnitude of the force due to gravity is proportional to the mass of a particle, and the
constant of proportionality is calledg. On earth,g = 9.8m/s2.

1.2.2 Damping

Damping is a velocity-based force that always opposes the current direction of movement. It has
a damping parameterkd which controls how strong the force is. Damping can be either a general
viscous damping on velocity (which crudely models movement through fluid) or damping on the
actions of another force (in particular spring forces, which will be covered in the next section). For
a particlei, viscous damping is usually expressed asfi(ẋ) = −kdẋi.

1.2.3 Linear Springs

Linear springs are a commonly used force that attempts to keep pairs of particles (or a particle
and a fixed point) a specified distance away from each other. They have a stiffness parameterks

that controls how strong the force is, a damping parameterkd, and a rest lengthr. The force
can be separated into two components – the positional component and the damping component.
The positional force component for a spring between two particlesi and j on particlei is fi =
ks(‖xj − xi‖ − r) xj−xi

‖xj−xi‖ , and the force on particlej is fj = −fi. Breaking this equation down,
we see that it is operating in the direction ofxj − xi (that is, the vector pointing fromxi to xj) that
has been normalized to be a unit vector by dividing by the length. The magnitude of the force is
proportional to the difference between the current distance between the two points and the desired
distance, scaled by the stiffness parameter.



CS 322—Springies 3

Damping of springs is ideally done only in the direction of the spring. This is accomplished by
taking the difference in velocities and taking the dot product with the direction of the spring, ap-
plying the result along the direction of the spring. So, ifd = xj−xi

‖xj−xi‖ , then the damping force

fi = kd((ẋj − ẋi) · d)d (and the negation of that forfj).

1.2.4 Fixed Position Springs

There are a few variations on springs which can be important. One are springs that act between a
particle and a fixed point. In this case the spring force is still computed as above, substituting the
position of the fixed point in for the position of one of the particles, but there is only a force applied
to the particle; no force can (or should) be applied to the fixed point.

Another variation involves spring forces that only act on a single particle in a given direction. For
instance, if a particle is inside a wall, a spring force can be used to pull that particle to the surface.
This spring force is a force between the particle and the closest point on the wall. Note that this
closest point will move over time, and so it is different from a fixed point spring, but it will still
result in a force being applied only to the particle. As an example, if a particle is inside a vertical
wall, a spring force acting in the horizontal direction towards the outside of the wall can bring the
particle to the surface. Even if the particle has motion parallel to the wall, the force will always act
horizontally to push it to the surface.

1.3 Integrators

Because there are usually no closed form solutions for most interesting ODEs (including the gen-
eral particle mechanics ODE), these problems are usually solved using numerical approximation.
Solving ODE initial value problems (problems for which the initial conditions are specified) is a
well-researched and generally well-understood area and has resulted in a rich variety ofintegrators
available. Anintegrator is an algorithm for advancing an ODE from a given state to a new state via
advancement of the independent variable. For ODEs where the independent variable is time, this
corresponds to stepping the system forward in time by some amount, called the timesteph. Integra-
tors have different properties such as the order (which is a measure of how accurate the answer is
in terms of the size ofh) and stability (which is a measure of what timesteps are safe to take for a
given system without causing the solution to diverge).

Some common explicit integrators are Forward Euler (Moler p. 191), Midpoint (Moler p. 192), 4th
Order Runge-Kutta (used by the MATLAB commandode45 ), and Backwards Euler.

1.4 Constraints

In some cases we may not want points to move at all over time, regardless of what forces are
being applied to them. In the framework, these points are indicated by having negative mass. For
explicit solvers like the ones you will be implementing, it is usually sufficient to set the derivatives
of position and velocity of the constrained points to be zero.



CS 322—Springies 4

Figure 1: A screenshot of the program in action



CS 322—Springies 5

2 Assignment

In this assignment you will build a simple mass-spring simulator that allows the user to load scene
descriptions from a file, select different integrators, and interact with the simulation using both
“probe” (a circular wall centered at the current mouse point) and “pull” (a spring between a given
particle and the current mouse point) tools. It also models gravity, viscous damping, spring, and
wall collision forces with the two horizontal and two vertical walls.

The program can be started up with the commandmspringies() . The GUI allows for different
forces to be turned on and off, different integrators to be selected, and various scene definition files
(specified in the xspringies format) to be loaded. It also allows for the results of the simulation to
be saved to disk and loaded in later for data analysis.

You are responsible for writing a functionstepScene that takes the current stateu, the current
scene structurescene , the desired timesteph, the maximum timets, the error precision, and the
integrator to use. It uses the specified integrator to advance the ODE from the current state to its
value atts, taking steps of at mosth in size for fixed-step integrators and keeping the error under
the precision for adaptive solvers.

As part of writing this assignment, you should also write another function that takes the state and
current scene description and evaluates the ODE functionG(u) for the first order ODE correspond-
ing to the equations of motion for the system. You will call this function from your integrators in
order to advance the system.

In your writeup you are also responsible for providing answers to the questions asked in the Ques-
tions section below.

3 Guidance

3.1 Getting Started

There are many ways to order the work involved in this assignment. One reasonable way of starting
would be to use the following order:

1. Write the function to evaluate the ODE for the equations of motion, at first with just gravity
forces

2. Write a forward Euler integrator instepScene , which allows you to test your ODE func-
tion.

3. Add viscous damping forces to your ODE function

4. Add wall forces to your ODE function

5. Add spring forces to your ODE function

6. Add probe / pull forces to your ODE function

7. Write a midpoint integrator,ode45 integrator, andode15s integrator

8. Write an adaptive forward Euler integrator



CS 322—Springies 6

3.2 The Scene

The scene that is passed tostepScene is specified in a MATLAB structure variable. A struct is
an object that has fields, where each field has a name and a value stored in that field (which can itself
be a struct, and so on). Struct fields are accessed using the familiar dot notation; for instance, given
a structscene with a fieldGravity that is itself a struct with fieldsEnabled andDirection ,
values can be accessed asscene.Gravity.Direction , etc. The scene passed in has many
fields describing the properties of the scene, as specified below:

Field name Type Description
Gravity struct Structure containing fields corresponding to the force of grav-

ity. Enabled is set to 1 if gravity is on, 0 if gravity is off.
Direction is a1×2 vector containing the direction and magni-
tude of the acceleration due to gravity. By default this is[0,−9.8],
but it can be changed in the scene file

Viscosity number The coefficient of viscous damping in the scene
TopWall 0 or 1 A boolean flag specifying whether the top wall is on (1) or off (0)
LeftWall 0 or 1 A boolean flag specifying whether the left wall is on (1) or off (0)
RightWall 0 or 1 A boolean flag specifying whether the right wall is on (1) or off (0)
BottomWall 0 or 1 A boolean flag specifying whether the bottom wall is on (1) or off

(0)
Mass n× 1 vector A vector containing the mass of particlei
Springs n× 5 matrix A matrix containing the spring connections. Each row is one

spring. The first column contains the index of the first particle, the
second column contains the index of the second particle, the third
column contains the stiffness (ks), the fourth contains the damping
coefficient (kd), and the fifth contains the rest length of the spring.

WallStiffness number Stiffness of the spring used to handle collisions with the walls and
probe

WallDamping number Damping coefficient of the spring used to handle collisions with
the walls and probe

Probe struct Structure containing fields corresponding to the probe.Enabled
is set to 1 if the probe is on and 0 otherwise.Position is a1×2
vector containing the current position of the probe, andRadius
is the radius of the probe.

PullForce struct Structure containing fields corresponding to the pull force.
Enabled is set to 1 if the pull force is on and 0 otherwise.
Position is a1× 2 vector containing the current position of the
mouse.Particle is the index of the particle that is being pulled.
RestLength is the rest length of the spring, andStiffness
and Damping are the stiffness and damping coefficients of the
spring, respectively

3.3 The State

The current state of the system as it is passed tostepScene is as an× 4 matrix, where each row
corresponds to a particle, with the first two entries being the(x, y) coordinates of its position and
the second two entries being the(x, y) coordinates of its velocity vector.



CS 322—Springies 7

3.4 Evaluating the ODE function

The ODE function you write should take the current state and the scene description as input and pro-
duce the value of the ODE functionG(u, t) for the first order ODE corresponding to the equations
of motion of the scene. Because our forces are independent of the current timet, it is not necessary
to havet be an argument to the function. The function should return the appropriate derivatives for
each component in the state.

ode45 andode15s , however, expect that the state and the value of the ODE function are column
vectors. Because of this, you will have to write your ODE function to accept and return state vectors,
rather than state matrices.

3.4.1 Wall “Collisions” and Probes

When a particle passes through a wall, we will model it as a linear spring acting in the direction
perpendicular to the wall and with a magnitude to push the particle back outside. Damping should
be applied as well to the particle, in the same manner as in the linear springs section.

The left and right walls are atx = 0 andx = 750, while the bottom and top walls are aty = 0 and
y = 550, respectively.

The probe is an interactive tool that is represented as a circular wall at the current mouse point.
Collisions with the probe should be treated in the same fashion as collisions with a wall – a linear
spring force should be applied in the direction from the particle to the closest point on the surface.

3.4.2 Pull Force

The pull force is an interactive force that is represented as a spring of a set length between a specified
particle and the mouse point. Again, it should be modeled as another linear spring in your code,
again involving only one point.

3.5 stepScene

stepScene is responsible for advancing the system forward in time by some amounttimeToStepTo ,
using the specified integrator. The integrators are as follows:

1. (mode = 1) Fixed-step size Forward Euler (see Moler p. 191)

2. (mode = 2) Fixed-step size Midpoint (see Moler p. 192)

3. (mode = 3) Adaptive step size Forward Euler

4. (mode = 4) MATLAB’s adaptive ODE solverode45

5. (mode = 5) MATLAB’s adaptive ODE solverode15s

For the fixed stepsize integrators, the integrator should advance the system forward according to the
integrator by stepsizes of at mosttimestep . Note that this may require a smaller step at the end
to step exactly totimeToStepTo .



CS 322—Springies 8

3.6 Adaptive Forward Euler

For adaptive size Forward Euler, you should start with a current stepsizecurrTS of timestep .
Until you have reached the max timetimeToStepTo , you should repeat the following loop

currTime = 0;
successes = 0;
while (currTime < timeToStepTo)

y_1 = forward_euler_step(state) of stepsize currTS;
y_2 = midpoint_step(state) of stepsize currTS;
err = y_2 - y_1;
if (max(err) > precision)

currTS = currTS / 2;
successes = 0;

else
state = y_1;
successes = successes+1;
currTime = currTime + currTs;
if (successes > 3)

currTs = currTs * 2;
end
if (currTime + currTs > timeToStepTo)

currTs = timeToStepTo - currTime;
end

end

What this loop does is compute both the Forward Euler and Midpoint steps and then checks the
error between them. If they differ by more than the specified precision, it halves the timestep and
tries again. Otherwise, it uses the result of the Forward Euler computation and advances forward. If
it is able to advance forward three times without any error, it will try to double the timestep. Note
that we use the result of the Forward Euler computation instead of the presumably more accurate
Midpoint evaluation. There is typically some debate about whether to use the lower or higher order
approximation, with advocates of the former pointing out that the error analysis is typically only
valid for the lower order answer. In any case, you should feel free to experiment with using the
results of either one in your computations.

3.7 ode45 and ode15s

Both ode45 andode15s take as an argument afunction handleto the ODE function to evaluate.
This function should be of the formG(t,u) (note the order of arguments, and the presence of the
time variablet). A function handle in MATLAB is a variable that contains a function, and can be
called just like any other function. In order to allow your ODE function to be evaluated by one of
these two methods, it should be written to take and return the state and derivative of the state as
vectors, and not matrices. If your ODE function is calledevalODEFunction , for instance, in
stepScene you can use

opts = odeset(...)



CS 322—Springies 9

ode45(@(t, x) evalODEFunction(x, scene), [0 timeToStepTo], myState, opts)

The@(t, x) syntax creates ananonymous functionand passes its handle toode45 . This anony-
mous function takes the passed in statex and passes it to our ODE function, along with the scene
variable fromstepScene . We are allowed to do this because our anonymous function can refer-
ence variables that are in the scope ofstepScene . Note also that we disregard thet parameter as
it is not needed.

You should useodeset to set the precision for the adaptive algorithms accordingly. One idea is
to use the precision field as the Relative Error, and set the Absolute Error to be relatively low (say
0.01 to 0.001).

4 Questions

1. Runpend.xsp with both Forward Euler and Midpoint. What range of timesteps result in
expected behavior for each integrator? Describe what happens when things go bad. What
happens as the timesteps get close to the boundary between good behavior and bad behavior?
Give a rough bound on the stability region of each integrator on this problem.

2. What error does Forward Euler and Midpoint produce? Run each integrator onsingle pendulum.xsp
with a fixed timestep for several choices of timestep and record the results, then compare the
error fromode45 with a small error precision. What can you conclude from your plots about
the order of accuracy of both Forward Euler and Midpoint?

Note that the recorder generates a MAT file that contains two fields,PointData , which is a
n × 4 × k 3D array wherePointData(:, :, i) is the state matrix at thei-th step, and
Time , which is ak × 1 vector that contains the current time at thei-th step. Also note that
the recorder only records every other frame for space considerations.

5 Submission and FAQ

Submission will be through CMS. A FAQ page will be kept on the course website detailing any new
questions and their answers brought to the attention of the course staff. Your submission should
include all MATLAB code you used. Your code should be well-commented and vectorized as much
as possible.

Your writeup should discuss the answers to the questions raised in the assignment, as well as general
observations of stability and speed of the various integrators applied to various scenes.

6 Starred Problems

1. Implement Backwards Euler as another integrator. See the attached documentation for more
details.


