
CS 322 Project 2: Spline Editor

out: Thursday 1 March 2007
Code due: Friday 16 March 2007

1 Background

Many programs, for instance CAD/CAM in engineering applications or animation systems used in
film production, need to represent curves and curved surfaces. A curve in two dimensions is often
specified parametrically, using a functionf(t) = (x(t), y(t)); that is, there are two functions, one
for thex-coordinate as a function oft and one for they-coordinate as a function oft, and the curve
is traced out ast varies, for instance from0 to 1. Although any pair of functions of one variable
defines a parametric curve, the most common curves used in practice are defined by polynomials.

1.1 Splines

To allow easy editing of curves, most vector editors allow the editing of curves using control points.
A spline is a set of control points, along with a method for generating a parametric function for a
curve from those control points. One commonly used type of spline is cubic Bézier splines, which
generate cubic polynomial functions for the curve.1 A segment of a B́ezier spline is described by
the positions of 4 control points, where the curve passes through both the first and fourth control
points with a derivative specified by the position of the second and third points relative to the first
and fourth. A given spline can consist of multiple segments linked together—Bézier segments share
the first and fourth control point with their predecessor and successor neighboring segments, respec-
tively. A Bézier spline isC0 but not necessarilyC1, because at the boundary between neighboring
spline segments, one segment could specify one derivative while the other could specify an en-
tirely different derivative. We can enforce a weaker version of continuity (known asG1 continuity)
between spline segments by requiring that the third control point of one segment, the fourth/first
control point shared between the two segments, and the second control point of the next segment
are all colinear.

Given the positions of the four control points, it is easy to obtain the coefficients of the cubic
polynomial for either of the two types. Given a matrixC of size4× 2 that contains the positions of
the control points in order from top to bottom, the coefficients of the cubicsx(t) = a3t

3 + a2t
2 +

a1t + a0 andy(t) = b3t
3 + b2t

2 + b1t + b0 for Bézier curves are given by the matrix product

1Bézier splines exist for any degree of polynomial, but we will stick to the commonly used cubic Béziers.

1

CS 322—Splines 2


a3 b3

a2 b2

a1 b1

a0 b0

 =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

C (1)

Typically, each segment of a spline is drawn on screen by approximating it as a sequence of line
segments between the points(x(t), y(t)) for a sufficiently dense sequence oft values.

1.2 Polynomials inMATLAB

MATLAB provides several functions to help in using and manipulating polynomial functions.
polyval(coeffs, x) takes in a vector of coefficients (ordered from highest degree to low-
est) and a value, and returns the valuep(x), wherep is the polynomial with coefficients from the
vector. roots(coeffs) returns the roots of the polynomial whose coefficients are in coeffs.
Note thatroots() can return imaginary values, so your code should check for and discard those
roots (usingimag() and real() as needed).polyder(coeffs) returns the coefficients of
the derivative of the polynomial with the given coefficients.conv(coeff1, coeff2) returns
the coefficients of theconvolutionof the polynomialsp1 andp2 with coefficients fromcoeff1
andcoeff2 respectively. The convolution is equivalent to the polynomialp3(x) = p1(x)p2(x),
that is, the product of the two polynomials, soconv returns the coefficients from the polynomial
p3(x) = p1(x)p2(x)

One note about mathematical stability—finding the roots of a quadratic polynomial can be done
stably (that is, without significant errors) by direct computation in fixed-precision arithmetic. There
is a closed form for finding the roots of a cubic, but in general it can not be guaranteed to be stable
in fixed-precision arithmetic and so should not be used in practice. There is no useful closed form
for quartics, and none at all for higher order roots. In general,roots() finds the roots through an
iterative algorithm rather than a closed-form solution, and for cubics and higher should be used to
find the roots of polynomials.

2 Assignment

In this assignment you will build a simple interactive curve editor that lets the user sketch curves
with the mouse, select them, edit them, and slice them. This explores interpolants, linear and
nonlinear fitting, and root finding.

The framework can be started with the commandsplineMaker() . It contains basic drawing
capabilities, including the ability to make and edit splines by dragging their control points around.
For each spline, it generates the cubic polynomials for each segment and evaluates them over a
dense sampling of values oft within [0, 1] and then draws them on screen as a collection of linear
segments; as long as the sampling oft is fine enough, it appears onscreen as a curved surface. It
supports two types of curves,C0 Bézier curves and continuous Bézier curves, where the control
points are constrained so that the curve remains smooth. It also supports closing curves as you draw
– clicking on the first control point in the segment will create a closed curve, filling in any necessary
points needed to make it a well-defined curve.

To draw B́ezier curves, set the dropdown to Bézier and simply click to create the control points. To

CS 322—Splines 3

Figure 1: A screenshot of the program in action. The leftmost selected curve is a closedC0 Bézier
curve, while the rightmost selected curve is a continuous Bézier curve

create continuous B́ezier curves, set the dropdown to continuous Bézier curves and click and drag
to create an endpoint of a segment and the two control points on either side, moving the mouse to
adjust the shape of the curve.

We would like to allow additional capabilities, which will be supported by code that you have to
write.

1. We would like to have the ability to click on any part of the spline curve (not just the control
points) and drag it to a new position. In order to support this, you need to write a function
constrainSplinePoint that takes the control points for a spline segment, a specified
value of t, and a 2D point, and produces a new set of control points such that the curve
described by the new points passes through the specified point att, while moving the control
points as little as possible from their original locations.

2. We would like to be able to select multiple splines at once by dragging a rectangle around
them, selecting a spline only if it is completely enclosed by the rectangle. In order to support
this, you need to write a functionsplineIsInside that takes a rectangle and a spline seg-
ment and determines whether or not that spline segment lies completely inside the rectangle.

3. We would like the ability to draw a line on the screen and “cut” any spline that is intersected
by the line into multiple splines. To do this, you need to write a functionsliceSpline that
takes a spline segment and a line segment, determines where (if at all) the line intersects, and
returns sets of control points for all of the resulting sliced segments (or the original control
points if it did not intersect)

4. Finally, we would like the ability to draw on the screen and have our mouse input automat-
ically converted into a spline that reasonably approximates our motion. To do this, you will
write a functionmatchScribble that takes a sequence of mouse input and an error tol-
erance and produces a sequence of spline segments that match the mouse input within the
specified error tolerance while using as few spline segments as possible.

CS 322—Splines 4

3 Guidance

3.1 General Features

The terminology used by the assignment is that a single curve consists of a sequence ofsegments,
where each segment is generated as a Bézier curve using 4 control points, and neighboring se-
quences share their last and first control points with their predecessor and successor segments.

The framework supports both basic Bézier curves and what are termed “continuous Bézier curves”.
The only difference between the two is that continuous Bézier curves have additional constraints on
multiple segments within a curve to ensure that the curve remains continuous. For any function that
takes atype argument, the type is set to 1 for regular Bézier curves and 2 for continuous Bézier
curves.

For control points, they are organized ask × 2 matrices, where the first column is the x-coordinate
and the second column is the y-coordinate, and each row is a control point in order. For most of this
assignment, you will only be working with segments, which means that you will get a4× 2 matrix
of control point data.

3.2 Constraining a Point on a Spline Segment

The goal here is to move the control points as little as possible while still ensuring that the curve
passes through the specified point at the specified value of t. This can be formulated as an undercon-
strained LLS system. Note that because it is underconstrained, there are many possible answers to
the system, but we want the one that causes the least total movement in the control points. Since the
default behavior of MATLAB when solving underconstrained systems is to minimize the norm of
the solution vector, you should formulate your system in terms of thechangethat needs to be made
to the control points, rather than the new value they should take (which will simply be the old value
plus the computed change). Thus, in this case the minimal norm solution actually means something,
in that it can be thought of as the solution that moves the control points “least” (for some definition
of least).

For continuous B́ezier segments, you should solve for the smallest movement of the control points
that both satisfies the constraint and preserves the requirement that the first and second control
points should only move along the line between the two of them (and similarly for the third and
fourth control points) in order to preserve the continuity. You will probably find it necessary to
solve a single system for both thex andy movements (that is, finding a8× 1 vector as opposed to a
4× 2 matrix) since there are some constraints that involve bothx andy coordinates simultaneously
(but in a linear way).

3.3 Checking if a Spline Segment is Contained in a Rectangle

Note that it is not sufficient to simply check to see if the control points are contained in the rectangle,
because some curves may be contained in the rectangle while their control points are not. This
requires finding the minimal and maximal values of the curve in bothx andy and ensuring that they
are contained in the rectangle. Finding the minimal and maximal points inx corresponds to finding
the roots of the derivative ofx(t) and evaluatingx(t) at those points, and similarly fory. Note that
this is a quadratic function, and so there is a closed form solution for the roots.

CS 322—Splines 5

Figure 2: Selecting multiple splines. Note how only one is selected

The rectangle is passed in to the function as

[
minX minY
maxX maxY

]
; i.e. only the top left and bottom

right points are passed in.

3.4 Slicing a Spline

This task consists of two separate phases. The first phase is finding all points on the spline segment
that intersect with the line segment. This can be formulated as finding the roots of a specific cubic
polynomial. Consider the line segment(xs, ys) to (xd, yd). Then there is a direction vectord =
(xd − xs, yd − ys), which is the vector along the line segment. If we take another direction vector
v(t) = (x(t)− xs, y(t)− ys) for some choice oft, i.e. the vector from the start of the line segment
to some point on the spline, then(x(t), y(t)) can potentially intersect the line segment only ifv(t)
is parallel tod. This is equivalent to saying that if there is some vectord′ which is perpendicular
to d, thenv(t) must be perpendicular tod′, or v(t) · d′ = 0. Given this, you can come up with a
specific cubic polynomialp(t) such thatp(t) = 0 only if v(t) · d′ = 0, and then you can find the
roots of that polynomial to determine possible points of intersection. Note that this will only check
thatv(t) intersects the infinite line through(xs, ys) alongd, so you still need to check thatt ∈ [0, 1]
and that the intersection point lies on the line segment before accepting it as an intersection.

Once you have all intersections, you now need to generate new spline segments. For instance, if
there were intersections att1 and t2, 0 < t1 < t2 < 1, then three new spline segments need to
be generated, corresponding to the old spline evaluated from[0, t1], [t1, t2], and[t2, 1] respectively.
However, we have defined splines as being evaluated ont ∈ [0, 1], so we need to generate new
control points for each new segment that evaluate to the same curves but are evaluated on[0, 1]. We
can do this using functionss(t) that map[0, 1] to [tlow, thigh] for each of the given segments, then
finding the coefficients ofx(s(t)) andy(s(t)). Given these new coefficients, you can then solve a
linear system using the spline matrices to determine which control points result in that polynomial.

The return value is a 3-D arrayA of sizek×4×2, wherek is the number of spline segments. Thus,

CS 322—Splines 6

Figure 3: Slicing a spline into two pieces. Note: we have the left half of the result selected

A(1, :, :) should be the control points for the first spline segment,A(2, :, :) should be the control
points of the second spline segment (if needed), and so on. If the line segment did not intersect the
spline segment, then the original control points should be returned.

3.5 Matching a Scribble

At first glance, this seems like an easy LLS problem: find some cubic polynomial functions that best
fit the input, using the methods you know for computing coefficients. However, there are a number
of issues that must be considered here. One is that you don’t necessarily know how many spline
segments you will need ahead of time. Another is that you don’t necessarily know whatt value
you should assign each mouse input—the simple approach above assumes that you know thet-
values in order to evaluate the left hand side matrix, but in fact you don’t know what the best choice
should be. Put another way, you are trying to find some functionsx(t) andy(t) that minimizes
(xi − x(t))2 + (yi − y(t))2 for inputsxi, yi, but not only do you not know the coefficients of the
functions, you don’t even know the value oft.

The algorithm we propose you implement is the following:

P = {all mouse points in order}
until no more points

S = {the first few points in P}
until no more points

guess values of t for each point in S, with first point
t=0 and last point t=1

find coefficients of best cubic function to fit points
at chosen values of t using LLS

for a few (2 - 3) iterations
for each point (xi, yi) in S

CS 322—Splines 7

Figure 4: Scribbling with the mouse, and the resulting matched spline

find tn that minimizes ||(x(t), y(t)) - (xi, yi)||
for current cubic coefficients

set value of t for (xi, yi) to tn
end
find new coefficients of best cubic function to fit

points at new chosen values of t using LLS, set
as new coefficients to use.

end

err = least squares error of last fit.

if (err < tolerance)
bestKnownCubic = last fit
add a couple more points from the beginning of P to S

else
create spline segment from best known cubic so far
remove points in S from T
S = {the first few points remaining in T}

end
end

end

The algorithm proposed is a greedy one—it attempts to find a spline segment that matches as many
points as possible from the beginning of the mouse input, and when it can no longer keep the error
below the tolerance it creates a spline segment from the last set of points that it knew was below the
tolerance, removes those points from consideration, and then repeats until there are no more points
in the input. In order to fit a spline to the points currently being considered, it guesses values for
t for each point, fits a cubic polynomial using LLS, updates the values oft for each point to the

CS 322—Splines 8

best values oft for the current cubic, then finds a new cubic for the new values oft, repeating this
process for a few times in an attempt to find the best combination oft values for the mouse points
and cubic coefficients to match the specified points.

Some things to note:

1. You need to keep track of the last known cubic fit that was under the error tolerance—you
shouldn’t generate the cubic segment that was over the error tolerance

2. You are generating a sequence of segments, unlike the previous parts which only dealt with
a single spline segment. Remember that a spline composed of multiple segments will share
some control points between segments—the last control point in a Bézier segment is also the
first control point in the subsequent segment, and for a continuous Bézier segment the second
control point must lie on the line between the first control point of the current segment and
the third control point of the previously generated segment. If you are not fitting the first
segment, make sure you set up your LLS system to account for the fact that the positions of
one (or more) control points may already be known and/or constrained in some fashion.

3. Minimizing
√

(xi − x(t))2 + (yi − y(t))2 is equivalent to minimizing(xi − x(t))2 + (yi −
y(t))2, which is a 6th degree polynomial, so minimizing it involves finding the roots of its
derivative, which is a 5th degree polynomial.

4. There are many strategies to use for an initial guess oft for each point. One is to treat the
points of the input as the vertices of line segments, compute the length of each segment (that
is, the distance between neighboring points), and set the t value of a given mouse point to be
the cumulative length of all line segments from the first point in your fit to the specified point,
scaling all t-values so that the first point in the fit has t-value of0 and the last has a t-value of
1.

4 Submission and FAQ

Submission will be through CMS. A FAQ page will be kept on the course website detailing any new
questions and their answers brought to the attention of the course staff. Your submission should
include all MATLAB code you used. Your code should be well-commented, and it should describe
the mathematical problem(s) your code is solving at each step of the algorithm for each of the
functions you need to implement.

5 Starred Problems

1. The time complexity of the scribble algorithm as we have presented it is rather poor. Do
something clever to speed it up. Some ideas include reusing t-values for some previously fit
points for a few iterations (i.e. only do the nonlinear fit oft values for new points inS on
the current iteration, using knownt values for previous points, and do a globalt optimization
over all points inS less often), or binary search to add many points into the setS at once, or
something more clever than our current greedy approach to finding spline segments.

CS 322—Splines 9

2. We are solving a nonlinear minimization problem for scribble with an iterative two-phase
strategy (solving a linear system for values oft, then solving for bestt values given the results
of the linear system solve). Formulate the function to be minimized as a single nonlinear
function in all variables (that is, the coefficients of the spline curve and allt values for each
mouse point) and use the Optimization Toolbox in MATLAB to find the minimum value.
Measure the performance of your solution with respect to the proposed scribble algorithm.
Do you get better results? Is it faster?

Some starting points you may want to look at in MATLAB arefmincon and fminunc ,
among others.

