
CS 322 Project 3: Springies - Backward Euler (Starred
Problem)

1 Background

Forward Euler, Midpoint, and the Runge-Kutta integrators have one thing in common - they are all
explicitmethods for advancing an ODE. An explicit method has a formula forun+1 in terms of only
un andG(un, t). For instance, Forward Euler when applied to the ODEu̇ = G(u, t) gives

un+1 = un + hG(un, t)

Here we have straightforward equations for the next state given our current state. Note in particular
that we are using the function evaluated at the current state to update the new state. Suppose instead
we revise these equations:

un+1 = un + hG(un+1, tn+1)

Now, we are using the ODE function evaluated at thenew state in order to determine what the
new state should be. This gives us what is commonly known as the Backward Euler scheme for
integration. Note that because our equation for the new state uses the new state itself, we have an
implicit method instead of an explicit method. This means that we no longer have a simple formula
for the new state given the current state.

Let ∆u = un+1 − un. Then we can rewrite the above equation as

∆u = hG(un + ∆u, tn+1)

One approach to solving this is to take the first order Taylor expansion of the right hand side about
G(un, tn):

∆u = h(G(un, tn) +
δG
δu

∆u +
δG
δt

∆t)

whereδG
δu is the Jacobian matrix of derivatives of each component ofG with respect to each com-

ponent ofu. We note that in this assignment,G does not depend ont, and so the derivative with
respect tot will be the zero vector. Doing some algebraic manipulations gives us:

1



CS 322—Springies 2

∆u = hG(un, tn) + h
δG
δu

∆u

∆u− h
δG
δu

∆u = hG(un, tn)(
I− h

δG
δu

)
∆u = hG(un, tn)

Note that this is a system of linear equations – we have a matrix on the left hand side and a vector
on the right hand side, and we are solving for the change in the state vector. You should also note
that for this assignment the matrix is4n × 4n and the change in state vector is4n, wheren is
the number of particles, because we are working in 2D and there are 2 position components and 2
velocity components in the state for each particle . Once we set up and solve this system for∆u,
we can get the value ofun+1 in a straightforward manner.

One catch (and the reason why explicit schemes are used whenever possible) is that the derivatives
of each component of the the ODE functionG with respect to each component of the state must
be computed. However, this matrix will in general have a specific structure in this assignment. For
instance, the derivative of the components ofG corresponding to some particlei with respect to
the components in the state corresponding to some particlej will be nonzero if and only if there is
some force acting between them — in the case of the assignment, if there is a spring between the
two particles. Thus, you can use the sparse matrix libraries built into MATLAB to build the right
hand side matrix (such assparse andspeye , etc). In general, this may or may not result in a
faster linear system to solve — if you have the time, you may want to experiment and see whether
sparse or dense matrices result in faster execution.

In order to implement Backwards Euler, you will have to

1. Change your ODE function to optionally return the sparse matrices corresponding to the
derivatives of each component ofG with respect tou (they should only be calculated if
needed)

2. Implement the code to solve the above linear system given the derivative matrix returned by
your ODE function


