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This document is a transcription of the notes I used to give the CS322
lectures on the SVD. It covers the SVD and what it is, a bit about how it’s
computed, and then applications to finding a matrix’s fundamental subspaces,
solving rank-deficient least squares problems, deciding matrix rank in the pres-
ence of noise, and in principal component analysis.

1 From QR to SVD

We’ve just been looking at an orthogonal matrix factorization that gives us an
orthogonal factor on the left:

A = QR

By drawing in that dotted line we separate Q in to a basis for the range of
A (the left part) and a basis for the rest of IRm. This Q factor tells us about
the column space of A.

When we wanted to know about the row space of A instead we factored AT ,
resulting in something that might be called the ”LQ factorization” (except that
it isn’t):

AT = QR or A = RTQT

In the full-rank case the row space of a tall matrix of the column space of
a wide matrix are uninteresting, so we can pick one of these two factorizations.
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But if the matrix is not full rank (it is rank deficient) we will be stuck choosing
one or the other.

The next factorization we’ll look at, the SVD, has orthogonal factors on both
sides, and it works fine in the presence of rank deficiency:

A = UΣV T (or AV = UΣ)

The SVD writes A as a product of two orthogonal transformations with a di-
agonal matrix (a scaling operation) in between. It says that we can replace
any transformtion by a rotation from “input” coordinates into convenient co-
ordinates, followed by a simple scaling operation, followed by a rotation into
“output” coordinates. Furthermore, the diagonal scaling Σ comes out with its
elements sorted in decreasing order.

2 SVD definitions and interpretation

The pieces of the SVD have names following the “singular” theme. The columns
of U are the left singular vectors ui; the entries on the diagonal of Σ are the
singular values; and the columns of V (which are the rows of V T are (you
guessed it) the right singular vectors vi.

The SVD has a nice, simple geometric interpretation (see also Todd Will’s
SVD tutorial linked from the Readings page, which has a similar take). It’s
easiest to draw in 2D.

Let U =
[
u1 u2

]
and V T =

[
vT
1

vT
2

]
.

If we take the unit circle and transform it by A, we get an ellipse (because A
is a linear transformation). The left singular vectors u1, u2 are the major and
minor axes of that ellipse (being on the left they live in the “output” space).
The right singular vectors v1, v2 are the vectors that get mapped to the major
and minor axes (being on the right they live in the “input” space).

If we break the transformation down into these three stages we see a circle
being rotated to align the vs with the coordinate axes, then scaled along those
axes, then rotated to align the ellipse with the us:
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Another way to say some of this is that Avi = σiui, which you can see by
this 2D example: [

vT
1

vT
2

]
v1 =

[
1
0

]
; UΣ

[
1
0

]
= σ1u1

We can easily promote this idea to 3D, though it becomes harder to draw:

Let’s look at what happens when we have a singular (aka. rank-deficient)
matrix, in this 3× 3 setting.

A rank-deficient matrix is one whose range is a subspace of IR3, not all of
IR3, so it maps the sphere to a flat ellipse rather than an ellipsoid:

A =
[
u1 u2 u3

] a b
0

vT
1

vT
2

vT
3


This means one of the singular values (the last one, since we sort them in
decreasing order) is zero. The last left singular vector is the normal to that
ellipse.

A rank-deficient matrix is also one that has a nontrivial null space: some
direction that gets mapped to zero. In this case, that vector is v3, since

V T v3 =

0
0
1

 and Σ

0
0
1

 =

0
0
0

 .
More generally, the SVD of a rank-r matrix looks like this:
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In this picture, r < n < m. So the matrix is rank-deficient (r < n) with an
r-dimensional range and an (n− r)-dimensional null space.

3 Computing the SVD

This topic is not finished in these notes. If you are interested you can read
Golub and Van Loan, but you don’t need to know this material for any CS322
assignments or exams in CS322 (in 2007, anyway).

4 Applications of the SVD

4.1 Fundamental subspaces of a matrix

From our rectangles-and-squares picture of the SVD, we can read off the four
fundamental spaces:

• U1 is a basis for ran(A) (just like in QR) (dim = r). After multiplication
by Σ only the first k entries can be nonzero, so only vectors in span(U1)
can be produced by multiplication with A.

• U2 is a basis for ran(A)⊥ (dim = m − r). Since all the entries of ΣV Tx
corresponding to those columns of U are zero, no vectors in span(U2) can
be generated by multiplication with A.

• V2 is a basis for null(A) (dim = n− r). Since any vector in span(V2) will
end up multiplying the zero singular values, it will get mapped to zero.

• V1 is a basis for the row space of A (dim = r).

Again, when the matrix is rank-deficient, all four spaces are nontrivial.
If we are just interested in a factorization of A from which we can reconstruct

A we need only the first r singular vectors and singular values:
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4.2 Rank-deficient least squares

As with most of our other linear algebra tools, SVD provides yet another way
to solve linear systems.

Ax = b x = V Σ−1UT b

No problem! It’s just three matrix multiplications. The inverse of Σ is easy:
it is just diag(1/σ1, 1/σ2, . . . , 1/σn). This may be the simplest yet—but not
the fastest. Note that back substitution takes less arithmetic than full matrix
multiplication.

This process is nice and stable, and it’s very clear exactly where the numbers
can get bigger: only when they get divided by small singular values. It’s also
clear up front if the process will fail: it’s when we divide by a zero singular
value.

One of the strengths of the SVD is that it works when the matrix is singular.
How would we go about solving a singular system? More specifically, how can
we solve Ax ≈ b, A square n× n, rank r < n?

This is no longer a system of equations we can expect to have an exact
solution, since ran(A) ⊂ IRn and b might not be in there. It also will not have
a unique solution. If Ax∗− b is minimum, so is A(x∗+ y)− b for any vector y ∈
null(A). Thus a system like this is both overdetermined and underdetermined.

SVD gives us easy access to the solution space, though. The procedure for
doing this is a combination of the procedures we used for over- and underdeter-
mined systems using QR. First we expand the residual we’re trying to minimize
using the SVD of A and then transform it by UT (which does not change the
norm of the residual):

‖Ax− b‖ = ‖UΣV Tx− b‖2 = ‖ΣV Tx− UT b‖2

=
∥∥∥∥[Σ1 0

0 0

]
V Tx−

[
UT

1

UT
2

]
b

∥∥∥∥2

Breaking apart the top and bottom rows:

= ‖
[
Σ1 0

]
V Tx− UT

1 b‖2 + ‖UT
2 b‖2

The first term can be made zero; the second is the residual. But because of rank
deficiency, minimizing the first term is an overdetermined problem—the matrix[
Σ1 0

]
V T is wider than tall. If we let y = V Tx and c = UT

1 b, then split y into[
y1
y2

]
the system to be solved is

[
Σ1 0

] [y1
y2

]
= c

Σ1y1 = c

Since y2 does not change the answer we’ll go for the minimum-norm solution
and set y2 = 0. Then x = V1y1.

So the solution process boils down to just:
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1. Compute SVD.

2. c = UT
1 b.

3. y1 = Σ−1
1 c.

4. x = V1y1.

Or, more briefly,
x = V1Σ−1

1 UT
1 b. (1)

This is just like the full-rank square solution, but with U2 and V2 left out.
I can also explain this process in words:

1. Transform b into the U basis.

2. Throw out components we can’t produce anyway, since there’s no point
trying to match them.

3. Undo the scaling effect of A.

4. Fill in zeros for the components that A doesn’t care about, since it doesn’t
matter what they are.

5. Transform out of the V basis to obtain x.

4.3 Pseudoinverse

If A is square and full-rank it has an inverse. Its SVD has a square Σ that has
nonzero entries all the way down the diagonal. We can invert Σ easily by taking
the reciprocals of these diagonal entries:

Σ = diag(σ1, σ2, . . . , σn)

Σ−1 = diag(1/σ1, 1/σ2, . . . , 1/σn)

and we can write down the inverse of A directly:

A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1 = V Σ−1UT (2)

So the SVD of A−1 is closely related to the SVD of A. We simply have swapped
the roles of U and V and inverted the scale factors in Σ. Earlier we interpreted
U and V as bases for the “output” and “input” spaces of A, so it makes sense
that they are exchanged in the inverse. A nice thing about this way of getting
the inverse is that it’s easy to see before we start whether and where things will
go badly: the only thing that can go wrong is for the singular values to be zero
or nearly zero. In our other procedures for the inverse we just plowed ahead and
waited to see if things would blow up. (Of course, don’t forget that computing
the SVD is many times more expensive than a procedure like LU or QR.)

6



If A is non-square and/or rank deficient, it no longer has an inverse, but we
can go ahead and generalize the SVD-based inverse, modeling it on the rank-
deficient least squares process we just saw. Looking back at (1), we can see that
we are treating the matrix

A+ = V1Σ−1
1 UT

1 (3)

like an inverse for A, in the sense that we solve the problem Ax ≈ b by writing
x = A+b. It is also just like the formula in (2) for A−1 except that we have kept
only the first r rows and/or columns of each matrix.

The matrix A+ is known as the pseudoinverse of A. Multiplying a vector by
the pseudoinverse solves a least-squares problem and gives you the minimum-
norm solution. Note that writing down a pseudoinverse for a matrix always
involves deciding on a rank for the matrix first.

There’s another way in which the pseudoinverse is like an inverse: it is the
matrix that comes closest to acting like an inverse, in the sense that multiplying
A by A+ almost produces the identity:

A+ = min
X∈IRn×m

‖AX − Im‖F

= min
X∈IRn×m

‖XA− In‖F

We can prove this by looking at X in A’s singular vector space:

X ′ = UXV T

so that

AX − I = (UΣV T )(V X ′UT )− I
UT (AX − I)U = ΣX ′ − I

Since U is orthogonal, multiplying by it didn’t change the F-norm of AX − I.
This means we’ve reduced the problem of minimizing ‖AX − I‖F to the easier
problem of minimizing ‖ΣX ′ − I‖F . Since the last m − r rows of Σ are zero,
the closest we can hope to match I is to get the first r rows to match. We can
do that easily by setting

X ′ = Σ+ =
[
Σ−1

1 0
0 0

]
so that

ΣΣ+ =
[
Ir 0
0 0

]
.

Now that we know the optimal X ′ we can compute the corresponding X, which
is A+, and you can easily verify that A+ comes out to the expression in (3).

Here are some facts about A+ for special cases:

• A full rank, square: A+ = A−1 (as it has to be if it’s going to be the closes
thing to an inverse, when the inverse in fact exists!)
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• A full rank, tall: A+A = In but AA+ 6= Im. By the normal equations
we learned earlier, A+ = (ATA)−1AT since both matrices compute the
(unique) solution to a full-rank least squares problem.

• A full rank, wide: AA+ = Im but ATA 6= In. Again by normal equations,
A+ = AT (AAT )−1.

Said informally, in both cases you can get the small identity but not the big
identity, because the big identity has a larger rank than A and A+.

4.4 Numerical rank

Sometimes we have to deal with rank-deficient matrices that are corrupted by
noise. In fact we always have to do this, because when you take some rank-
deficient matrix and represent it in floating point numbers, you’ll usually end
up with a full-rank matrix! (This is just like representing a point on a plane
in 3D – it’s only if we are lucky that a floating point number happens to lie
exactly on the plane; usually it has to be approximated with one near the plane
instead.)

When our matrix comes from some kind of measurement that has uncertainty
associated with it, it will be quite far from rank-deficient even if the underlying
“true” matrix is rank-deficient.

SVD is a good tool for dealing with numerical rank issues because it answers
the question:

Given a rank-k matrix, how far is it from the nearest rank-(k − 1)
matrix?

That is, How rank-k is it?, or How precisely to we have to know the matrix in
order to be sure that it’s not actually rank-(k − 1)?

SVD lets us get at these questions because, since rank and distances are
unaffected by the orthogonal transformations U and V , numerical rank questions
about A are reduced to questions about the diagonal matrix Σ.

If Σ has k entries on its diagonal, we can make it rank-(k − 1) by zeroing
the kth diagonal entry. The distance between the two matrices is equal to the
entry we set to zero, namely σk, in both the 2-norm and the F −norm. It’s not
surprising (though I won’t prove it) that this is the closest rank-(k− 1) matrix.

If we have a rank-k matrix and perturb it by adding a noise matrix that has
norm less then ε, it can’t change the zero singular values by more than ε. This
means noise has a nicely definable effect on our ability to detect rank: if the
singular values are more than ε we know they are for real (they did not just
come from the noise) and if they are less then ε we don’t know whether they
came from the “real” matrix or from the noise.

We can roll these ideas up in a generalization of rank known as numeri-
cal rank: whereas rank(A) is the (exact) rank of the matrix A, we can write
rank(A, ε) for the highest rank we’re sure A has if it could be corrupted by noise
of norm ε. That is, rank(A, ε) is the highest r for which there are no rank-r
matrices within a distance ε of A.
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4.5 Principal component analysis

Another way of viewing the SVD is that it gives you a sequence of low-rank
approximations to a data matrix A. These approximations become accurate as
the rank of the approximation approaches the “true” dimension of the data. To
do this, think of the product UΣV T as a sum of outer products.

[Aside: recall the outer product version of matrix multiply, from way back
at the beginning:

C = AB ; cij =
∑

k

aikbkj ; C =
∑

k

a:kbk:

We can use the same idea even with Σ in the middle.]
We can express the SVD as a sum of outer products of corresponding left

and right singular vectors:

A =

 | |
u1 · · · um

| |

Σ

— vT
1 —
...

— vT
n —


=
∑

i

σiuiv
T
i

This is a sum of a bunch of rank-1 matrices (outer product matrices are always
rank 1), and the norms of these matrices are steadily decreasing.

By truncating this sum and including only the first r terms, we wind up
with a matrix of rank r that approximates A. In fact, it is the best rank-r
approximation, in both the 2-norm and the Frobenius norm.

Interpreting this low-rank approximation in terms of column vectors leads
to a powerful and widely used statistical tool known as principal component
analysis. If we have a lot of vectors that we think are somehow related—they
came from some process that only generates certain kinds of vectors—then one
way to try to identify the structure in the data is to try and find a subspace that
all the vectors are close to. If the subspace fits the data well, then that means
the data are low rank: they don’t have as many degrees of freedom as there
are measurements for each data point. Then, with a basis for that subspace in
hand, we can talk about our data in terms of combinations of those basis vectors,
which is more efficient, especially if we can make do with a fairly small number
of vectors. It can make the data easier to understand by reducing the dimension
to where we can manage to think about it, or it can make computations more
efficient by allowing us to work with the (short) vectors of coefficients in place
of the (long) original vectors.

To be a little more specifc, let’s say we have a bunch of m-vectors called
a1, . . . , an. Stack them, columnwise, into a matrix A, and then compute the
SVD of A.

A = UΣV T

The first n columns of U are the principal components of the data vectors
a1, . . . , an. The entries of Σ tell us the relative importance of the principal
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components. The rows of V give the coefficients of the data vectors in the
principal components basis. Once we have this representation of the data, we
can look at the singular values to see how many of the principal components
seem to be important. If we use only the first k principal components, leaving
out the remaining n − k components, we’ve chosen a k-dimensional subspace,
and the error of approximating our data vectors by their projections into that
subspace is limited by the magnitude of the singular values belonging to the
components we left off. This subspace is optimal in the 2-norm sense, and in
the F-norm sense.

One adjustment to this process, which sacrifices a bit of optimality in ex-
change for more meaningful principal components, is to first subtract the mean
of the ais from each ai. Of course, you need to keep the mean vector around and
add it back in whenever you are approximating vectors from the components.

Sources

• Our textbook: Moler, Numerical Computing in Matlab. Chapter 5.

• Golub and Van Loan, Matrix Computations, Third edition. Johns Hopkins
Univ. Press, 1996. Chapter 5.
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